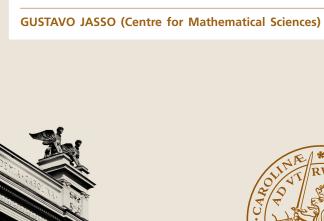


Minimal A_{∞} -algebras of endomorphisms



Lecture 1

Motivation: The reconstruction problem

T: k-linear Hom-finite Krull–Schmidt triangulated category

$$G \in \mathfrak{T}$$
: basic (classical) generator, $\operatorname{thick}(G) = \mathfrak{T}$
$$\operatorname{End}_{\mathfrak{T}}^{\bullet}(G) = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathfrak{T}}(G, \Sigma^{i}(G)) \qquad g * f := \Sigma^{j}(g) \circ f, \quad |f| = j$$

Problem: Reconstruct \mathfrak{T} from $\operatorname{End}_{\mathfrak{T}}^{\bullet}(G)$ as a triangulated category.

In general, this is **NOT** possible!

$$A = \mathbf{k}[x]/(x^{\ell}), \quad \ell \geq 3, \qquad \text{thick}(S) = \mathrm{D^b}(\operatorname{mod} A) = \mathfrak{T}$$

$$\mathrm{End}_{\mathrm{D^b}(\operatorname{mod} A)}^{\bullet}(S) \cong \mathrm{Ext}_A^{\bullet}(S,S) \cong \mathbf{k}[\varepsilon,t]/(\varepsilon^2), \quad |\varepsilon| = 1 \quad \text{and} \quad |t| = 2$$

$$\mathrm{End}_{\mathrm{D^b}(\operatorname{mod} A)}^{\bullet}(S) \text{ is } \underline{\operatorname{independent}} \text{ of } \ell \quad \text{but} \quad Z(A) = A \text{ is derived invariant.}$$

Differential graded algebras

A differential graded algebra consists of a graded algebra

$$\mathbf{A} = \bigoplus_{i \in \mathbb{Z}} \mathbf{A}^i$$

 $A^i \otimes A^j \to A^{i+j}, \quad x \otimes y \mapsto xy,$ and a differential

$$d: A \rightarrow A(1), \quad d \circ d = 0,$$

such that

$$\underbrace{\mathbf{d}(xy) = \mathbf{d}(x)y + (-1)^{|x|}x\mathbf{d}(y)}_{\text{graded Leibniz rule}}.$$

• Every differential graded algebra **A** has a triangulated derived category D(**A**).

$$\operatorname{Hom}_{\operatorname{D}(\mathbf{A})}(\mathbf{A},\mathbf{A}[i]) \cong \operatorname{H}^{i}(\mathbf{A})$$

 D^c(A) := thick(A) ⊆ D(A) is the perfect derived category.

 X^{\bullet} : complex in an additive category

$$hom(X^{\bullet}, X^{\bullet}) := \bigoplus_{i \in \mathbb{Z}} hom(X^{\bullet}, X^{\bullet})^{i}$$
$$hom(X^{\bullet}, X^{\bullet})^{i} := \prod_{i \in \mathbb{Z}} hom(X^{i}, X^{i+j})$$

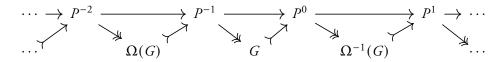
$$\partial(f) := d_{P^{\bullet}} \circ f - (-1)^{|f|} f \circ d_{P^{\bullet}}$$

Derived endomorphism algebras

Suppose that ${\mathfrak T}$ is algebraic:

 $\mathfrak{T}\simeq\underline{\mathcal{E}}_{\mathbb{S}}\text{ for a }\mathbf{k}\text{-linear Frobenius exact category }(\mathcal{E},\mathcal{S}).$

Choose a complete S-projective resolution P^{\bullet} of $G \in \mathfrak{T} \simeq \underline{\mathcal{E}}_{\mathbb{S}}$:



 $REnd_{(\mathcal{E},\mathcal{S})}(G) = hom(P^{\bullet}, P^{\bullet})$: differential graded algebra of endomorphisms

 $H^{\bullet}(\operatorname{REnd}_{(\mathcal{E},\mathcal{S})}(G)) \cong \operatorname{End}_{\mathfrak{T}}^{\bullet}(G)$ as graded algebras

Keller's Reconstruction Theorem

Theorem (Keller 1994)

Set $A := REnd_{(\mathcal{E},\mathcal{S})}(G)$. There exists an exact equivalence

$$\widetilde{\Upsilon} \xrightarrow{\sim} D^{\mathsf{c}}(\mathbf{A}), \qquad G \longmapsto \mathbf{A}.$$

In general, the quasi-isomorphism type of $\mathbf{REnd}_{(\mathcal{E},\mathcal{S})}(G)$ is $\underline{\mathsf{not}}$ determined by $\mathfrak{T}!$

Problem: Classify the DG algebras A such that there exists an exact equivalence

$$\widetilde{\mathcal{T}} \xrightarrow{\sim} D^{\mathsf{C}}(\mathbf{A}), \qquad G \longmapsto \mathbf{A}.$$

Remark: This problem is intimately related to the question of uniqueness of differential graded enhancements for \mathfrak{T} .

Formality of differential graded algebras

Definition

A differential graded algebra A is

- formal if it is quasi-isomorphic to its cohomology $H^{\bullet}(A)$.
- intrinsically formal if every differential graded algebra B such that

$$H^{\bullet}(A) \cong H^{\bullet}(B)$$

is moreover quasi-isomorphic to A.

Intrinsic formality \implies Formality $\xrightarrow{\text{The converse is false}}$ in general.

 $H^{\bullet}(A) = H^{0}(A) \implies A$ is intrinsically formal (corresponds to $G \in \mathcal{T}$ is tilting)

Derived endomorphism algebras of simple modules

Theorem (Keller 2001)

 $A = \mathbf{k}Q/I$: finite-dimensional algebra $S = S_1 \oplus \cdots \oplus S_n$ direct sum of the simple A-modules $(\operatorname{thick}(S) = \operatorname{D^b}(\operatorname{mod} A))$ $\mathbf{R}\operatorname{Hom}_A(S,S) \text{ is formal } \iff A \text{ is Koszul}$

A is Koszul \iff Ext $_{4}^{\bullet}(S,S)$ is generated in degrees 0 and 1

- Hereditary algebras
- Radical square-zero algebras
- Quadratic monomial algebras

- Exterior algebras
- Tensor products of Koszul algebras ...

Kadeishvili's Intrinsic Formality Criterion

The Hochschild cohomology of a graded algebra Λ^{\star} is the bigraded vector space

$$\mathrm{HH}^{\bullet,\star}(\Lambda^{\star}) := \mathrm{Ext}^{\bullet,\star}_{\Lambda^{\star}\text{-bimod}}(\Lambda^{\star},\Lambda^{\star}).$$

Theorem (Kadeishvili 1988)

Suppose that

$$HH^{p+2,-p}(\Lambda^{\star}) = 0, \qquad p > 0. \tag{\dagger}$$

Then, Λ^* is intrinsically formal as a differential graded algebra.

Theorem (Etgü-Lekili 2017, Lekili-Ueda 2022, J. Liu-Zh.Wang)

ADE zig-zag algebras in good characteristic satisfy condition (†).

Intrinsic formality of Laurent polynomial algebras

$$\Lambda[u^{\pm}] := \Lambda \otimes \mathbf{k}[u^{\pm}], \qquad |u| = d \ge 1$$

Remark: $D(\Lambda[u^{\pm}])$ is the *d*-periodic derived category of Λ -modules.

Suppose that $1_{\mathfrak{T}} \cong \Sigma^d$ as additive functors and that $G \in \mathfrak{T}$ satisfies

$$\operatorname{Hom}_{\mathfrak{T}}(G,\Sigma^{i}(G))=0 \quad \text{for } i \notin d\mathbb{Z}.$$

Then $\operatorname{End}_{\mathfrak{T}}^{\bullet}(G) \cong \operatorname{End}_{\mathfrak{T}}(G)[u^{\pm}]$ with |u| = d.

Theorem (S. Saito 2023)

If Λ has projective dimension at most d as a Λ -bimodule, then $\Lambda[u^{\pm}]$ satisfies condition (†) and hence it is intrinsically formal as a differential graded algebra.

Twisted Laurent polynomial algebras

 Λ an arbitrary algebra and $\sigma \colon \Lambda \xrightarrow{\sim} \Lambda$ an automorphism

$$\Lambda(\sigma, d) := \frac{\Lambda\langle u^{\pm} \rangle}{\langle xu - u\sigma(x) \mid x \in \Lambda \rangle}, \qquad |u| = d \ge 1$$

Suppose that $G \in \mathcal{T}$ satisfies

$$\exists \varphi \colon G \xrightarrow{\sim} \Sigma^d(G) \quad \text{and} \quad \operatorname{Hom}_{\mathbb{T}}(G, \Sigma^i(G)) = 0 \text{ for } i \notin d\mathbb{Z}.$$

Define the automorphism

$$\sigma = \sigma_{\varphi} \colon \operatorname{End}_{\mathfrak{T}}(G) \overset{\sim}{\to} \operatorname{End}_{\mathfrak{T}}(G), \quad f \longmapsto \varphi^{-1} \circ \Sigma^{d}(f) \circ \varphi.$$

$$G \xrightarrow{\varphi} \Sigma^{d}(G)$$

$$\downarrow \sigma(f) \qquad \qquad \downarrow \Sigma^{d}(f)$$

$$G \xleftarrow{\varphi^{-1}} \Sigma^{d}(G)$$

$$\operatorname{End}_{\mathfrak{T}}^{\bullet}(G) \cong \operatorname{End}_{\mathfrak{T}}(G)(\sigma, d), \qquad \varphi \longmapsto u$$

$d\mathbb{Z}$ -cluster tilting objects

Definition (Iyama-Yoshino 2008)

A basic object $G \in \mathcal{T}$ is a d-cluster tilting object if

$$\begin{split} \operatorname{add}(G) &= \{ X \in \mathcal{T} \mid \forall 0 < i < d, \ \operatorname{Hom}_{\mathcal{T}}(X, \Sigma^{i}(G)) = 0 \} \\ &= \{ Y \in \mathcal{T} \mid \forall 0 < i < d, \ \operatorname{Hom}_{\mathcal{T}}(G, \Sigma^{i}(Y)) = 0 \}. \end{split}$$

We call G a $d\mathbb{Z}$ -cluster tilting object if, moreover,

•
$$\exists \varphi \colon G \xrightarrow{\sim} \Sigma^d(G)$$
 (Geiß–Keller–Oppermann 2013).

$$G \in \mathcal{T}$$
 is $1\mathbb{Z}$ -cluster tilting \iff add $(G) = \mathcal{T}$

Proposition (Iyama-Yoshino 2008)

$$G \in \mathfrak{T}$$
: $d\mathbb{Z}$ -cluster tilting \implies thick $(G) = \mathfrak{T}$

Triangulated categories with Serre functor

Suppose that
$$\exists S: \mathcal{T} \xrightarrow{\sim} \mathcal{T}$$
 a Serre functor:

$$\operatorname{Hom}_{\mathfrak{T}}(Y, SX) \xrightarrow{\sim} D\operatorname{Hom}_{\mathfrak{T}}(X, Y), \quad \forall X, Y \in \mathfrak{T}$$

Proposition (Iyama-Oppermann 2013)

The following are equivalent for a basic *d*-cluster tilting object $G \in \mathcal{T}$:

- G is a $d\mathbb{Z}$ -cluster tilting object.
- There is an isomorphism $SG \cong G$.
- End_T(G) is self-injective and Hom_T($\Sigma^{i}(G), G$) for 0 < i < d 1.

vosnex property

The vosnex property is <u>vacuous</u> for d = 1, 2

Examples of $1\mathbb{Z}$ -cluster tilting objects

Triangulated categories of finite type: $add(G) = \mathcal{T}$

- Stable module categories of self-injective algebras of finite representation type.
- Stable categories of maximal Cohen–Macaulay modules of complete local Gorenstein isolated singularities of finite Cohen–Macaulay type.

- Stable categories of Gorenstein-projective modules of finite-dimensional Iwanaga–Gorenstein algebras of finite Gorenstein-projective type.
- Cluster categories of hereditary algebras of finite representation type.

See F. Muro's talk next week for more on these.

Examples of 2Z-cluster tilting objects

Amiot cluster categories of self-injective quivers with potential

- (Barot–Kussin–Lenzing 2010,
 J .2015) Weighted projective lines of tubular tubular type ≠ (3, 3, 3).
- (Herschend–lyama 2011) Certain planar quivers with potential.
- (Pasquali 2020)
 Rotationally-symmetric Postnikov diagrams on the disk.

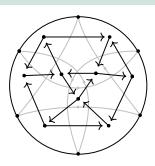


Figure by Colin Krawchuk

See F. Muro's talk for important examples from 3-dim birational geometry.

Examples of $d\mathbb{Z}$ -cluster tilting objects

Definition (Iyama-Oppermann 2011)

A finite-dimensional algebra if \underline{d} -representation-finite if it admits a d-cluster tilting module.

- (Geiß–Leclerc–Schroer 2007 for d=1, Iyama–Oppermann 2013) Stable module categories of (d+1)-preprojective algebras of d-Auslander algebras of type \mathbb{A} .
- (Darpö–lyama 2020) Stable module categories of certain self-injective *d*-representation-finite algebras.
- (J–Külshammer 2016) Stable module categories of self-injective *d*-Nakayama algebras.
- (lyama–Oppermann 2013) d-Calabi–Yau Amiot–Guo–Keller cluster categories of Keller's derived (d + 1)-preprojective algebras of d-representation-finite algebras of global dim d.

See the preprint <u>arXiv:2208.14413</u> (J-Muro) for more examples.

Twisted periodic algebras

Definition (Brenner-Butler, Green-Snashall-Solberg 2003)

A finite-dimensional algebra Λ is <u>twisted</u> (d+2)-periodic if there exists an automorphism $\sigma\colon \Lambda \stackrel{\sim}{\longrightarrow} \Lambda$ such that

$$\Omega^{d+2}_{\Lambda^e}(\Lambda) \cong {}_1\Lambda_{\sigma} \quad \text{in} \quad \underline{\text{mod}}\Lambda^e.$$

We say that A is (d + 2)-periodic if $\sigma = 1$.

(Green–Snashall–Solberg 2003) Twisted periodic algebras are self-injective.

Proposition (Dugas 2012, Hanihara 2020 d = 1, Chan–Darpö–Iyama–Marczinzik)

 $G: d\mathbb{Z}$ -cluster tilting object \implies End_T(G) is twisted (d+2)-periodic

Twisted fractionally CY algebras

A: finite-dimensional algebra of finite global dimension

The triangulated category $D^b \pmod{A}$ admits the Serre functor

$$S := - \otimes_A^L DA \colon D^b(\operatorname{mod} A) \xrightarrow{\sim} D^b(\operatorname{mod} A).$$

Definition

Let $l \neq 0$ and m be integers. The algebra A is twisted fractionally $\frac{m}{\ell}$ -Calabi-Yau if there exists an automorphism $\phi \colon A \stackrel{\sim}{\longrightarrow} A$ such that

$$S^{\ell} \cong [m] \circ \phi^*.$$

We say that A is fractionally $\frac{m}{\ell}$ -Calabi–Yau if $\phi = 1$.

Periodic algebras from fractionally CY algebras

$$T(A) := A \ltimes DA$$
 the trivial extension of A

Theorem (Chan-Darpö-Iyama-Marczinzik)

A is fractionally CY
$$\longleftrightarrow$$
 $T(A)$ is periodic trivial: $\sigma=1$ ψ trivial: $\phi=1$

A is twisted fractionally CY \iff T(A) is twisted periodic

Suppose that A is ring-indecomposable

Open ↑

Theorem (Herschend–Iyama 2011)

A is d-representation-finite of global dim $d \implies A$ is twisted fractionally CY

$d\mathbb{Z}$ -cluster tilting objects from twisted periodic algebras

 Λ : basic twisted (d+2)-periodic algebra with respect to $\sigma \colon \Lambda \xrightarrow{\sim} \Lambda$

Problem 1: Does there exist a differential graded algebra **A** with $H^{\bullet}(A) \cong \Lambda(\sigma, d)$ and such that $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object?

Problem 2: Suppose that $H^{\bullet}(A) \cong \Lambda(\sigma, d)$. How to determine whether $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object?

Problem 3: Suppose that $H^{\bullet}(A) \cong \Lambda(\sigma, d)$ and that $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object.

What additional data is needed to reconstruct **A** from its cohomology $H^{\bullet}(A)$, at least up to quasi-isomorphism?

Lecture 2

$d\mathbb{Z}$ -cluster tilting objects from twisted periodic algebras

 Λ : basic twisted (d+2)-periodic algebra with respect to $\sigma \colon \Lambda \xrightarrow{\sim} \Lambda$

Problem 1: Does there exist a differential graded algebra **A** with $H^{\bullet}(A) \cong \Lambda(\sigma, d)$ and such that $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object?

Problem 2: Suppose that $H^{\bullet}(A) \cong \Lambda(\sigma, d)$. How to determine whether $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object?

Problem 3: Suppose that $H^{\bullet}(A) \cong \Lambda(\sigma, d)$ and that $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object.

What additional data is needed to reconstruct **A** from its cohomology $H^{\bullet}(A)$, at least up to quasi-isomorphism?

The Derived Auslander–Iyama Correspondence

Theorem (Muro 2022 for d = 1, J–Muro for $d \ge 1$)

Suppose that the field k is perfect. The map

$$A \longmapsto (H^0(A), H^{-d}(A)) = (Hom_{D(A)}(A, A), Hom_{D(A)}(A, A[-d]))$$

induces a bijection between the following:

- 1. Quasi-isomorphism classes of DG algebras A such that:
 - H⁰(**A**) is a basic finite-dimensional algebra.
 - **A** ∈ D^{c} (**A**) is a $d\mathbb{Z}$ -cluster tilting object.
- 2. Pairs (Λ, σ) such that
 - $-\Lambda$ is a basic self-injective algebra and
 - $\sigma: \Lambda \xrightarrow{\sim} \Lambda$ such that $\Omega_{\Lambda^e}^{d+2}(\Lambda) \simeq {}_1\Lambda_{\sigma}$ in $\underline{\operatorname{mod}}\Lambda^e$,

up to algebra isomorphisms compatible with

$$\overline{\sigma} \in \mathrm{Out}(\Lambda) := \mathrm{Aut}(\Lambda)/\mathrm{Inn}(\Lambda). \qquad (H^{-d}(\mathbf{A}) \cong {}_1H^0(\mathbf{A})_{\sigma})$$

Constructing the inverse of the correspondence

 Λ : twisted (d+2)-periodic with respect to $\sigma: \Lambda \xrightarrow{\sim} \Lambda$

$$\Lambda(\sigma, d) \cong \bigoplus_{d \in d\mathbb{Z}} \sigma^i \Lambda_1, \qquad x * y := \sigma^j(x)y, \quad |y| = dj$$

We aim to construct a differential graded algebra A such that

$$H^{\bullet}(A) \cong \Lambda(\sigma, d)$$

and $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object.

These properties should determine A up to quasi-isomorphism.

Stasheff's A_{∞} -algebras

An \underline{A}_{∞} -algebra structure on a graded vector space Λ^* consists of homogeneous morphisms of degree 2-n

$$m_n \colon \underbrace{\Lambda^{\bigstar} \otimes \cdots \otimes \Lambda^{\bigstar}}_{n \text{ times}} \longrightarrow \Lambda^{\bigstar}, \qquad n \geq 1,$$

 $\sum \pm \frac{r}{m_{s-1+1}} = 0$

such that the A_{∞} -equations are satisfied:

$$\sum_{n=r+s+t} (-1)^{r+st} m_{r+1+t} \circ (1^r \otimes m_s \otimes 1^t) = 0 \qquad (n \ge 1)$$

$$m_1 \circ m_1 = 0$$

$$m_1 \circ m_2 = m_2 \circ (m_1 \otimes 1 + 1 \otimes m_1)$$

$$\underbrace{m_2 \circ (1 \otimes m_2 - m_2 \otimes 1)}_{\text{Associator for } m_2} = \underbrace{m_1 \circ m_3 + m_3 \circ (m_1 \otimes 1 \otimes 1 + 1 \otimes m_1 \otimes 1 + 1 \otimes 1 \otimes m_1)}_{\partial(m_3) \text{ in } \text{hom}(\Lambda^{\star} \otimes \Lambda^{\star}, \Lambda^{\star})} \underbrace{(\Lambda^{\star}, m_1)}$$

Remarks on the definition of A_{∞} -algebras

$$\Lambda^* = \Lambda^0 \implies m_n = 0 \text{ for } n \neq 2 \text{ for degree reasons.}$$

$$m_1 = 0 \implies (\Lambda^*, 0, m_2)$$
 is an associative graded algebra.

 $(\Lambda^{\star}, m_1, m_2)$: differential graded algebra $\iff (\Lambda^{\star}, m_1, m_2, 0, \dots)$: A_{∞} -algebra.

There are several sign conventions in use: Stasheff, Keller–Lefèvre-Hasegawa*, Kontsevich–Merkulov, Fukaya–Seidel.

See Polishchuk's Field Guide for details.

... one may equivalently consider shifted A_{∞} -structures to dispense with most signs.

Morphisms between A_{∞} -algebras

An A_{∞} -morphism between A_{∞} -algebras

$$f : (\Lambda_1^{\star}, m^{(1)}) \rightsquigarrow (\Lambda_2^{\star}, m^{(2)})$$

consists of degree 1 - n morphisms

$$f_n: \underbrace{\Lambda_1^{\star} \otimes \cdots \otimes \Lambda_1^{\star}}_{n \text{ times}} \longrightarrow \Lambda_2^{\star}, \qquad n \geq 1,$$

 $\sum \pm \frac{r}{f_{r+1+t}} =$

$$\sum \pm \underbrace{\begin{array}{c} i_1 \\ \vdots \\ f_{i_1} \end{array}}_{m_r} \underbrace{\begin{array}{c} i_r \\ \vdots \\ f_{i_r} \end{array}}_{m_r}$$

that satisfy the following equations:

$$\sum (-1)^{r+st} f_{r+1+t} \circ (1^r \otimes m_s \otimes 1^t) = \sum (-1)^s m_r \circ (f_{i_1} \otimes \cdots \otimes f_{i_r}) \qquad (n \ge 1)$$

We say that f is an A_{∞} -quasi-isomorphism if f_1 is a quasi-isomorphism.

Minimal models of differential graded algebras

An
$$A_{\infty}$$
-algebra is minimal if $m_1 = 0$.

A minimal model of a differential graded algebra A is an A_{∞} -quasi-isomorphism

$$f: (H^{\bullet}(A), m_2, m_3, m_4, m_5, \dots) \rightsquigarrow A$$

such that f_1 induces the identity in cohomology: $H^{\bullet}(f_1) = 1$.

Homotopy Transfer Theorem (Kadeishvili 1982)

Every differential graded algebra admits a minimal model.

$$H^{\bullet}(A) \stackrel{i}{\longleftrightarrow} A \curvearrowright b$$

$$\begin{aligned} |i| &= |p| = 0, & |h| &= -1 \\ \partial(i) &= 0 & \partial(p) &= 0 \\ \rho \circ i &= 1 & \partial(h) &= 1 - i \circ p \end{aligned}$$

Minimal models are unique up to A_{∞} -isomorphism.

A_{∞} -algebras vs differential graded algebras

$$A_{\infty}$$
-category $\equiv A_{\infty}$ -algebra with many objects

Theorem (Lefèvre-Hasegawa 2003, ..., Canonaco-Ornaghi-Stellari 2019 Pascaleff 2024)

The canonical functor $dgcat \rightarrow A_{\infty}$ -cat induces an equivalence of $(\infty, 1)$ -categories after ∞ -localising at the corresponding classes of quasi-equivalences.

This means that the notions of "differential graded category" and of " A_{∞} -category" are equivalent in a very strong sense.

- Each A_{∞} -algebra A has a triangulated derived category D(A).
- A_{∞} -quasi-isomorphic A_{∞} -algebras have equivalent derived categories:

$$A \simeq B \implies D(A) \simeq D(B)$$

Constructing the inverse of the Correspondence

 Λ : twisted (d+2)-periodic with respect to $\sigma: \Lambda \xrightarrow{\sim} \Lambda$

$$\Lambda(\sigma,d) \cong \bigoplus_{d \in \mathcal{A}^{\mathbb{Z}}} \sigma^{i} \Lambda_{1}, \qquad x * y := \sigma^{j}(x)y, \quad |y| = dj$$

We aim to construct a minimal A_{∞} -algebra $A = (\Lambda(\sigma, d), m)$ such that $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object.

This property should determine $A = (\Lambda(\sigma, d), m)$ up to A_{∞} -isomorphism.

See **F. Muro's talk** for details on the <u>existence</u> of such an A.

Minimal A_{∞} -structures on Yoneda algebras of simples

Theorem (Keller 2001)

A: basic finite-dimensional algebra

 $S = S_1 \oplus \cdots \oplus S_n$ direct sum of the simple A-modules

Every minimal model of $\mathbf{R}\mathrm{Hom}_A(S,S)$ is generated in deg 0 and 1 as A_∞ -algebra.

See <u>arXiv:2402.14004</u> (J) for a proof using AR theory of Nakayama algebras.

$$A = \mathbf{k}[x]/(x^{\ell}), \quad \ell \ge 3$$

$$\operatorname{Ext}_{A}^{\bullet}(S,S) \cong \mathbf{k}[\varepsilon,t]/(\varepsilon^{2}), \quad |\varepsilon| = 1 \text{ and } |t| = 2$$

$$m_{\ell}(\varepsilon,\varepsilon,\ldots,\varepsilon) = \pm t \quad \text{and} \quad m_{k} = 0 \quad \text{for} \quad k \ne 2, \ell$$

$$S \stackrel{S}{\longleftrightarrow} S \stackrel{S}{\longleftrightarrow}$$

Minimal A_{∞} -structures on Yoneda algebras of simples

Theorem (Keller 2001)

 $A = \mathbf{k}Q/I$: finite-dimensional algebra

$$S = S_1 \oplus \cdots \oplus S_n$$
 direct sum of the simple A-modules

$$(\operatorname{Ext}_A^{\bullet}(S,S),0)$$
 is a minimal model of $\operatorname{RHom}_A(S,S)$

 \iff A is Koszul

Sketch of proof of the theorem:

$$\forall n \geq 0 \quad \forall i \neq n$$

$$\operatorname{Ext}^n_{\operatorname{Gr} A}(S, S\langle i \rangle) = 0$$

See Jan Thomm's talk for A_{∞} -structures on Yoneda algebras of rep. generators.

Question: What is the significance of the first non-vanishing higher operation?

An old example, revisited

$$A = \mathbf{k}[x]/(x^3), \qquad G = S \oplus \frac{S}{S} \in \underline{\text{mod}}A, \qquad \text{add}(G) = \underline{\text{mod}}A$$

$$\Lambda = \underline{\text{End}}_A(G) \cong \mathbf{k}(S \xrightarrow{a} \frac{S}{S})/(ba, ab) = \Pi(\mathbb{A}_2)$$

(Schofield, Erdmann–Snashall 1998, Brenner–Butler–King 2002)

The preprojective algebra $\Pi(\mathbb{A}_2)$ is twisted 3-periodic w.r.t.

$$\sigma(s) = \frac{s}{s}, \quad \sigma(\frac{s}{s}) = s, \qquad \sigma(a) = -b, \qquad \sigma(b) = -a.$$

$$(\underline{\operatorname{End}}_{A}^{\bullet}(G), m)$$
: minimal A_{∞} -algebra

$$m_3(\varepsilon, \varepsilon, \varepsilon) = t_S$$
 $m_3(\delta, \delta, \delta) = t_S$
 $m_3(\varepsilon, b, a) = 1_S$ $m_3(\delta, a, b) = 1_S$

The Hochschild cochain complex

The bigraded Hochschild (cochain) complex of a graded algebra Λ^{\star} has components

$$C^{p,q}\left(\Lambda^{\star}\right) = C^{p,q}\left(\Lambda^{\star},\Lambda^{\star}\right) := \operatorname{Hom}_{\mathbb{K}}((\Lambda^{\star})^{\otimes p},\Lambda^{\star}[q]) \qquad p \geq 0, \quad q \in \mathbb{Z}.$$

Thus, a (p, q)-Hochschild cochain is a degree q morphism of graded vector spaces

$$c: \underbrace{\Lambda^{\star} \otimes \cdots \otimes \Lambda^{\star}}_{p \text{ times}} \longrightarrow \Lambda^{\star}.$$

The bidegree (1,0) Hochschild differential is, for $c \in C^{p,\star}(\Lambda^{\star})$,

$$\mathbf{d}_{\mathsf{Hoch}}c(x_1,\dots,x_p,x_{p+1}) := \pm x_1c(x_2,\dots,x_{p+1}) + \sum_{i=1}^p \pm c(\dots,x_ix_{i+1},\dots,) + \pm c(x_1,\dots,x_p)x_{p+1}$$

The Hochschild cochain complex (cont.)

For
$$c_1 \in C^{p,q}(\Lambda^*)$$
 and $c_2 \in C^{s,t}(\Lambda^*)$ define $c_1\{c_2\} \in C^{p+s-1,q+t}(\Lambda^*)$ by
$$c_1\{c_2\}(x_1,\ldots,x_{p+s-1}) := \sum_{i=1}^p \pm c_1(\ldots,x_{i-1},c_2(x_i,\ldots,x_{i-1+s}),x_{i+s},\ldots)$$

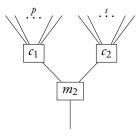
• The bidegree (-1,0) Gerstenhaber bracket is

$$[c_1,c_2]:=c_1\{c_2\}\pm c_2\{c_1\}.$$

• The bidegree (0,0) cup product is

$$c_1 \cdot c_2 = c_1 \smile c_2 := \pm m_2\{c_1, c_2\},$$

where $m_2 \colon \Lambda^{\star} \otimes \Lambda^{\star} \to \Lambda^{\star}$ is the multiplication.



$$m_2\{c_1,c_2\}$$

Hochschild cohomology of graded algebras

The Hochschild cohomology of Λ^* is the cohomology of the Hochschild complex:

$$HH^{\bullet,\star}(\Lambda^{\star}):=H^{\bullet,\star}\big(C^{\bullet,\star}\left(\Lambda^{\star}\right)\big)\cong \operatorname{Ext}_{\Lambda^{\star}\operatorname{-bimod}}^{\bullet,\star}(\Lambda^{\star},\Lambda^{\star})$$

The Hochschild cohomology is a Gerstenhaber algebra w.r.t the total degree • + ★:

- HH^{•,*}(Λ*)[1] is a graded Lie algebra with the Gerstenhaber bracket.
- HH^{•,*}(Λ*) is a graded commutative algebra with the cup product.
- The Gerstenhaber square Sq(c) induced by $c \mapsto c\{c\}$.

$$Sq(x + y) = Sq(x) + Sq(y) + [x, y]$$

$$Sq(x \cdot y) = Sq(x) \cdot y^{2} + x \cdot [x, y] \cdot y + x^{2} \cdot Sq(y)$$

$$[Sq(x), y] = [x, [x, y]]$$

In char(k) $\neq 2$, Sq(x) = $\frac{1}{2}[x, x]$.

Minimal A_{∞} -algebras, revisited

A minimal A_{∞} -algebra structure on Λ^* consists of Hochschild cochains

$$m_n \in \mathbb{C}^{n,2-n}(\Lambda^*), \qquad n \geq 3,$$

such that the (formal) Hochschild cochain

$$m = (m_3, m_4, m_5, \dots) \in \prod_{n>3} C^{n,\star} (\Lambda^{\star})$$

satisfies the Maurer-Cartan equation

$$d_{Hoch}(m) = \pm m\{m\}.$$

$$d_{Hoch}(m_n) = 0$$
 if $m_k = 0$ for $2 < k < n$

Shifted A_{∞} -structures are implicit here.

Lecture 3

Minimal A_{∞} -algebras, revisited

A minimal A_{∞} -algebra structure on Λ^* consists of Hochschild cochains

$$m_n \in \mathbb{C}^{n,2-n}(\Lambda^*), \qquad n \geq 3,$$

such that the (formal) Hochschild cochain

$$m = (m_3, m_4, m_5, \dots) \in \prod_{n>3} C^{n,\star} (\Lambda^{\star})$$

satisfies the Maurer-Cartan equation

$$d_{Hoch}(m) = \pm m\{m\} \stackrel{\text{char } \mathbf{k} \neq 2}{=} \frac{1}{2}[m, m].$$

$$d_{Hoch}(m_n) = 0$$
 if $m_k = 0$ for $2 < k < n$

Shifted A_{∞} -structures are implicit here.

The universal Massey product

A graded algebra is d-sparse if it is concentrated in degrees $d\mathbb{Z}$.

Definition

The universal Massey product (UMP) of a d-sparse minimal A_{∞} -algebra (Λ^* , m) is the Hochschild class

$$\overline{m_{d+2}} \in \mathrm{HH}^{d+2,-d}(\Lambda^{\star})$$

of the first possibly non-trivial higher operation.

The UMP satisfies $Sq(\overline{m_{d+2}}) = 0$ and is <u>invariant</u> under A_{∞} -isomorphisms.

Remark: For d = 1, Benson–Krause–Schwede (2004), Keller (2005, 2006), ...

The restricted universal Massey product

$$j: \Lambda := \Lambda^0 \longrightarrow \Lambda^*$$
 inclusion of the degree 0 component

$$j^* \colon HH^{\bullet,\star}(\Lambda^{\star}, \Lambda^{\star}) \longrightarrow HH^{\bullet,\star}(\Lambda, \Lambda^{\star})$$

Definition

The restricted universal Massey product (rUMP) of a d-sparse minimal A_{∞} -algebra (Λ^*, m) is the Hochschild class

$$j^*(\overline{m_{d+2}}) \in HH^{d+2,-d}(\Lambda, \Lambda^*).$$

$$\mathsf{HH}^{d+2,-d}(\Lambda,\Lambda^{\star})\cong \mathsf{HH}^{d+2}(\Lambda,\Lambda^{-d})\cong \mathsf{Ext}^{d+2}_{\Lambda\text{-bimod}}(\Lambda,\Lambda^{-d})$$

The Unit Theorem

$$\Lambda$$
: twisted $(d+2)$ -periodic w.r.t. $\sigma \colon \Lambda \xrightarrow{\sim} \Lambda$
 $A = (\Lambda(\sigma, d), m)$: minimal A_{∞} -algebra

Theorem (J-Muro)

Suppose that **k** is perfect. The following are equivalent:

- 1. $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object.
- 2. The rUMP

$$j^*(\overline{m_{d+2}}) \in \mathsf{HH}^{d+2}(\Lambda, {}_1\Lambda_\sigma) \cong \underline{\mathsf{Hom}}_{\Lambda^e}(\Omega^{d+2}_{\Lambda^e}(\Lambda), \; {}_1\Lambda_\sigma)$$

is invertible in $\operatorname{mod}\Lambda^{e}$.

3. $j^*(\overline{m_{d+2}})$ is invertible in Hochschild–Tate cohomology $HH^{\bullet,\star}(\Lambda,\Lambda^{\star})$.

$$j^*(\overline{m_{d+2}}) = 0$$
 is an isomorphism $\implies \Lambda$ is semi-simple

The bijectivity of the correpondence

$$\Lambda$$
: twisted $(d+2)$ -periodic w.r.t. $\sigma: \Lambda \xrightarrow{\sim} \Lambda$

Theorem (J-Muro)

1. There exists a minimal A_{∞} -algebra structure $(\Lambda(\sigma,d),m)$ s.t. the rUMP

$$j^*(\overline{m_{d+2}}) \in \mathsf{HH}^{d+2}(\Lambda, {}_1\Lambda_\sigma) \cong \underline{\mathsf{Hom}}_{\Lambda^e}(\Omega^{d+2}_{\Lambda^e}(\Lambda), {}_1\Lambda_\sigma)$$

is invertible in $mod \Lambda^e$.

2. Any two minimal A_{∞} -algebras as above are A_{∞} -isomorphic.

See **F. Muro's talk** next week for more details on this and the previous theorem, where the crucial role of Geiß–Keller–Oppermann (d+2)-angulated categories will be explained.

Kadeishvili's Intrinsic Formality Criterion, revisited

Theorem (Kadeishvili 1988)

Suppose that

$$HH^{p+2,-p}(\Lambda^{\star})=0, \qquad p>0.$$

Then, every minimal A_{∞} -structure on Λ^{\star} is A_{∞} -isomorphic to $(\Lambda^{\star}, 0)$.

$$\overline{m_3} \in \mathrm{HH}^{3,-1}(\Lambda^{\star}) = 0 \implies \exists f_2 \in \mathrm{C}^{2,-1}(\Lambda^{\star}) \text{ such that } \pm \mathrm{d}_{\mathrm{Hoch}}(f_2) = m_3.$$

$$(1, f_2, 0, \dots) \colon (\Lambda^{\star}, m_3, m_4, m_5, \dots) \rightsquigarrow (\Lambda^{\star}, 0, m_4', m_5', \dots)$$

Aim: Generalise Kadeishvili's Theorem to deal with the case

$$0 \neq \overline{m_{d+2}} \in HH^{d+2,-d}(\Lambda^{\star}).$$

d-sparse Massey algebras

A graded algebra is *d*-sparse if it is concentrated in degrees $d\mathbb{Z}$.

Definition (J-Muro)

A *d*-sparse Massey algebra is a pair $(\Lambda^*, \overline{c})$ consisting of:

- A *d*-sparse graded algebra Λ^* .
- A Hochschild class

$$\bar{c} \in \mathrm{HH}^{d+2,-d}(\Lambda^{\star})$$

such that $Sq(\bar{c}) = 0$.

Figure by DALL⋅E

 (Λ^{\star}, m) : d-sparse min. A_{∞} -algebra $\implies (\Lambda^{\star}, \overline{m_{d+2}})$: d-sparse Massey algebra

The Hochschild-Massey complex of a Massey algebra

Aim: Generalise Kadeishvili's Theorem to d-sparse Massey algebras.

The Hochschild–Massey complex of a d-sparse Massey algebra $(\Lambda^{\star}, \overline{c})$ is

$$C^{p,q}\left(\Lambda^{\star},\overline{c}\right):=\mathsf{HH}^{p,q}(\Lambda^{\star}) \qquad p\geq 0, \quad q\in\mathbb{Z}.$$

The bidegree (d + 1, -d) Hochschild–Massey differential is (almost everywhere)

$$\overline{x} \longmapsto [\overline{c}, \overline{x}].$$

The Hochschild–Massey cohomology of $(\Lambda^*, \overline{c})$ is

$$\mathsf{HH}^{\bullet,\star}(\Lambda^{\star},\overline{c}) := \mathsf{H}^{\bullet,\star}\big(\mathsf{C}^{\bullet,\star}(\Lambda^{\star},\overline{c})\big).$$

A Kadeishvili-type theorem for sparse Massey algebras

$$(\Lambda^{\star}, \overline{c})$$
: d-sparse Massey algebra

Theorem (J-Muro)

Suppose that

$$\mathsf{HH}^{p+2,-p}(\Lambda^{\star},\overline{c})=0, \qquad p>d. \tag{\dagger\dagger}$$

Then, any two minimal A_{∞} -algebras

$$(\Lambda^{\star}, m_{d+2}^{(1)}, m_{2d+2}^{(1)}, \dots)$$
 and $(\Lambda^{\star}, m_{d+2}^{(2)}, m_{2d+2}^{(2)}, \dots)$

such that $\overline{m_{d+2}}^{(1)} = \overline{c} = \overline{m_{d+2}}^{(2)}$ are (gauge) A_{∞} -isomorphic.

Recovering Kadeishvili's Theorem

$$(\Lambda^*, \overline{c})$$
: d-sparse Massey algebra

$$\mathsf{HH}^{p+2,-p}(\Lambda^{\star},\overline{0})=0, \qquad p>d \iff \mathsf{HH}^{p+2,-p}(\Lambda^{\star})=0, \qquad p>d$$

If this condition is satisfied, the theorem shows that a minimal A_{∞} -algebra (Λ^{\star}, m) such that $\overline{m_{d+2}} = 0$ is formal.

Proof of Kadeishvili's Thm: Let Λ^* be a (1-sparse) graded algebra such that

$$HH^{p+2,-p}(\Lambda^{\star})=0, \qquad p>0.$$

- The vanishing for p = 1 implies $(\Lambda^*, \overline{0})$ is the unique Massey algebra structure.
- The vanishing for p > 1 implies the Kadeishvili-type theorem applies.

On the proof of the Kadeishvili-type Theorem

$$(\Lambda^*, m_3, m_4, m_5, \dots)$$
: minimal A_{∞} -algebra

The equations of an A_{∞} -morphism imply that an arbitrary collection

$$f_1 = 1, \quad f_2 \in C^{2,-1}(\Lambda^*), \quad f_3 \in C^{3,-2}(\Lambda^*), \quad \dots$$

determines a unique minimal A_{∞} -algebra structure

$$(\Lambda^{\star}, m_3', m_4', m_5', \dots)$$

such that

$$f = (1, f_2, f_3, \dots) : (\Lambda^*, m) \rightsquigarrow (\Lambda^*, m')$$

is an A_{∞} -isomorphism.

For example,
$$m'_3 = m_3 \pm d_{Hoch}(f_2)$$

On the proof of the Kadeishvili-type Theorem (cont.)

The group of gauge A_{∞} -isomorphisms

$$\mathfrak{G}(\Lambda^{\star}) := \{ f \in \prod_{n=1}^{\infty} C^{n,1-n} (\Lambda^{\star}) \mid f_1 = 1 \}$$

acts on the set of minimal A_{∞} -structures on Λ^{\star} .

Tautologically, two minimal A_{∞} -structures are gauge A_{∞} -isomorphic if and only if they have the same $\mathfrak{G}(\Lambda^*)$ -orbit.

Question: How can we leverage this observation?

The set of minimal A_{∞} -algebra structures on Λ^* are the vertices of a CW complex $\mathfrak{A}_{\infty}(\Lambda^*)$ whose 1-cells are the gauge A_{∞} -isomorphisms!

The $\mathfrak{G}(\Lambda^{\star})$ -orbits are the path-connected components $\pi_0(\mathfrak{A}_{\infty}(\Lambda^{\star}))$.

With a little help from my friends

The CW complex $\mathfrak{A}_{\infty}(\Lambda^{\star})$ is the homotopy limit of a tower of fibrations

$$\mathfrak{A}_{\infty}(\Lambda^{\star}) \simeq \operatorname{holim} \mathfrak{A}_{n}(\Lambda^{\star}) \longrightarrow \cdots \longrightarrow \mathfrak{A}_{n}(\Lambda^{\star}) \longrightarrow \cdots \longrightarrow \mathfrak{A}_{4}(\Lambda^{\star}) \longrightarrow \mathfrak{A}_{3}(\Lambda^{\star})$$

where $\mathfrak{A}_n(\Lambda^*)$ is the CW complex of minimal A_n -algebra structures on Λ^* :

- A minimal A_3 -algebra structure consists of a Hochschild cochain $m_3 \in \mathbb{C}^{3,-1}(\Lambda^*)$.
- A minimal A_4 -algebra structure consists of a Hochschild cocycle $m_3 \in \mathbb{C}^{3,-1}(\Lambda^*)$ and a Hochschild cochain $m_4 \in \mathbb{C}^{4,-2}(\Lambda^*)$.
- •

We can leverage techniques from **Algebraic Topology / Homotopy Theory** such as the Milnor exact sequence

$$* \longrightarrow \lim^1 \pi_1(\mathfrak{A}_n(\Lambda^{\star})) \longrightarrow \pi_0(\mathfrak{A}_{\infty}(\Lambda^{\star})) \longrightarrow \lim \pi_0(\mathfrak{A}_n(\Lambda^{\star})) \longrightarrow *$$

There is a spectral sequence ...

The existence of Milnor exact sequences

$$* \longrightarrow \varprojlim^1 \pi_{k+1}(\mathfrak{A}_n(\Lambda^{\star})) \longrightarrow \pi_k(\mathfrak{A}_{\infty}(\Lambda^{\star})) \longrightarrow \varprojlim \pi_k(\mathfrak{A}_n(\Lambda^{\star})) \longrightarrow *$$

can be leveraged thanks to the <u>(fringed)</u> Bousfield–Kan spectral sequence (1972) of the tower

$$\mathfrak{A}_{\infty}(\Lambda^{\star}) \simeq \operatorname{holim} \mathfrak{A}_{n}(\Lambda^{\star}) \longrightarrow \cdots \longrightarrow \mathfrak{A}_{n}(\Lambda^{\star}) \longrightarrow \cdots \longrightarrow \mathfrak{A}_{4}(\Lambda^{\star}) \longrightarrow \mathfrak{A}_{3}(\Lambda^{\star})$$

Idea of proof of the Kadeishvili-type theorem:

• Two d-sparse minimal A_{∞} -algebra structures $(\Lambda^{\star}, m^{(1)})$ and $(\Lambda^{\star}, m^{(2)})$ such that

$$\overline{m_{d+2}}^{(1)} = \overline{m_{d+2}}^{(2)}$$

lie in the pointed kernel of the map $\pi_0(\mathfrak{A}_{\infty}(\Lambda^{\star})) \longrightarrow \varprojlim \pi_0(\mathfrak{A}_{\infty}(\Lambda^{\star}))$.

• Condition (††) yields the vanishing of $\varprojlim^1 \pi_1(\mathfrak{A}_n(\Lambda^*))$ — this uses Muro's extended Bousfield–Kan spectral sequece (2020).

Muro's extended Bousfield-Kan spectral sequence

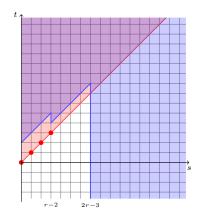


Figure by Fernando Muro

$$\mathfrak{A}_{\infty}(\Lambda^{\star}) \simeq \operatorname{holim} \mathfrak{A}_{n}(\Lambda^{\star})$$

- Pointed sets along the line t s = 0
- Groups along the line t s = 1
- Abelian groups elsewhere in the red region
- Vector spaces in the extended blue region

$$E_{d+2}^{p,p} = HH^{p+2,-p}(\Lambda^{\star}, \overline{c}) \qquad p > d$$

$$\pi_0(\mathfrak{A}_{\infty}(\Lambda^{\star})) \cong \varprojlim \pi_0(\mathfrak{A}_n(\Lambda^{\star}))$$

Concluding remarks and an invitation

Working with minimal A_{∞} -algebras instead of differential graded algebras provides access to new invariants and thus we may formulate new properties:

"The rUMP of the *d*-sparse minimal A_{∞} -algebra $(\Lambda(\sigma, d), m)$ is invertible."

I invite the audience to consider the following questions:

Let A be a differential graded algebra such that $A \in D^{c}(A)$ is a generator of a preferred type (P), for example a d-cluster tilting object.

Question 1: Can we detect property (P) in terms of the minimal models of A?

Question 2: Is there a derived correspondence for generators of type (P)?

Question 3: Are there properties of a minimal A_{∞} -algebra A that imply an interesting novel property of $A \in D^{c}(A)$?

The Kontsevich–Soibelman perspective

A minimal A_{∞} -algebra structure on a graded algebra Λ^*

$$m \in \prod_{n \geq 3} C^{n,2-n} (\Lambda^{\star})$$

has total degree 1 in the differential graded Lie algebra $C^{\bullet,\star}(\Lambda^{\star})[1]$ and is a solution to the Maurer–Cartan equation

$$d_{\text{Hoch}}(m) = \pm m\{m\} \stackrel{\text{char } \mathbf{k} \neq 2}{=} \pm \frac{1}{2}[m, m].$$

"An A_{∞} -algebra is the same as a non-commutative formal graded manifold X over, say, field \mathbf{k} , having a marked \mathbf{k} -point \mathbf{p} t equipped with [a degree 1 homological vector field]. ... It is an interesting problem to make a dictionary from the pure algebraic language of A_{∞} -algebras and A_{∞} -categories to the language of non-commutative geometry."

Kontsevich-Soibelman (2009)

Perhaps certain qualitative properties of such vector fields allow to extend the dictionary to include some aspects of the representation theory of FD algebras!

LUND UNIVERSITY