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Motivation: The reconstruction problem

T: k-linear Hom-finite Krull–Schmidt triangulated category

G ∈ T: basic (classical) generator, thick(G) = T

End•T (G) =
⊕

i∈ZHomT (G ,Σi (G)) g ∗ f := Σj (g) ◦ f , |f | = j

Problem: Reconstruct T from End•T (G) as a triangulated category.

In general, this is NOT possible!

A = k[x]/(x� ), � ≥ 3, thick(S) = Db(modA) = T

End•
Db (modA) (S) � Ext•A (S , S) � k[Y, t]/(Y2), |Y | = 1 and |t | = 2

End•
Db (modA) (S) is independent of � but Z (A) = A is derived invariant.



Differential graded algebras

A differential graded algebra
consists of a graded algebra

A =
⊕

i∈Z A
i

Ai ⊗ Aj → Ai+j , x ⊗ y ↦→ xy,

and a differential

d: A→ A(1), d ◦ d = 0,

such that

d(xy) = d(x)y + (−1) |x |xd(y)︸                                ︷︷                                ︸
graded Leibniz rule

.

• Every differential graded algebra A has a
triangulated derived category D(A).

HomD(A) (A,A[i]) � Hi (A)

• Dc(A) := thick(A) ⊆ D(A) is the
perfect derived category.

X •: complex in an additive category

hom(X •, X •) :=
⊕

i∈Z hom(X •, X •)i

hom(X •, X •)i := ∏
j∈Z hom(X j , X i+j)

m (f ) := dP• ◦ f − (−1) |f | f ◦ dP•



Derived endomorphism algebras

Suppose that T is algebraic:

T ' ES for a k-linear Frobenius exact category (E, S).

Choose a complete S-projective resolution P• of G ∈ T ' ES:

· · · P−2 P−1 P0 P1 · · ·

· · · Ω(G) G Ω−1(G) · · ·

REnd(E,S) (G) = hom(P•, P•): differential graded algebra of endomorphisms

H•
(
REnd(E,S) (G)

)
� End•T (G) as graded algebras



Keller’s Reconstruction Theorem

Theorem (Keller 1994)

Set A := REnd(E,S) (G). There exists an exact equivalence

T
∼−→ Dc(A), G ↦−→ A.

In general, the quasi-isomorphism type of REnd(E,S) (G) is not determined by T!

Problem: Classify the DG algebras A such that there exists an exact equivalence

T
∼−→ Dc(A), G ↦−→ A.

Remark: This problem is intimately related to the question of uniqueness of
differential graded enhancements for T.



Formality of differential graded algebras

Definition

A differential graded algebra A is
• formal if it is quasi-isomorphic to its cohomology H•(A).
• intrinsically formal if every differential graded algebra B such that

H•(A) � H•(B)

is moreover quasi-isomorphic to A.

Intrinsic formality =⇒ Formality The converse is false in general.

H•(A) = H0(A) =⇒ A is intrinsically formal (corresponds to G ∈ T is tilting)



Derived endomorphism algebras of simple modules

Theorem (Keller 2001)

A = kQ/I : finite-dimensional algebra

S = S1 ⊕ · · · ⊕ Sn direct sum of the simple A-modules ( thick(S) = Db(modA) )
RHomA (S , S) is formal ⇐⇒ A is Koszul

A is Koszul ⇐⇒ Ext•A (S , S) is generated in degrees 0 and 1

• Hereditary algebras
• Radical square-zero algebras
• Quadratic monomial algebras

• Exterior algebras
• Tensor products of Koszul
algebras …



Kadeishvili’s Intrinsic Formality Criterion

The Hochschild cohomology of a graded algebra Λ★ is the bigraded vector space

HH•,★(Λ★) := Ext•,★Λ★ -bimod(Λ
★,Λ★).

Theorem (Kadeishvili 1988)

Suppose that
HHp+2,−p (Λ★) = 0, p > 0. (†)

Then, Λ★ is intrinsically formal as a differential graded algebra.

Theorem (Etgü–Lekili 2017, Lekili–Ueda 2022, J. Liu–Zh.Wang)

ADE zig-zag algebras in good characteristic satisfy condition (†).



Intrinsic formality of Laurent polynomial algebras

Λ: arbitrary algebra

Λ[u±] := Λ ⊗ k[u±], |u| = d ≥ 1

Remark: D(Λ[u±]) is the d -periodic derived category of Λ-modules.

Suppose that 1T � Σd as additive functors and that G ∈ T satisfies

HomT (G ,Σi (G)) = 0 for i ∉ dZ.
Then End•T (G) � EndT (G) [u±] with |u| = d .

Theorem (S. Saito 2023)

If Λ has projective dimension at most d as a Λ-bimodule, then Λ[u±] satisfies
condition (†) and hence it is intrinsically formal as a differential graded algebra.



Twisted Laurent polynomial algebras

Λ an arbitrary algebra and f : Λ
∼−→ Λ an automorphism

Λ(f , d ) := Λ〈u±〉
〈xu − uf (x) | x ∈ Λ〉 , |u| = d ≥ 1

Suppose that G ∈ T satisfies

∃i : G
∼→ Σd (G) and HomT (G ,Σi (G)) = 0 for i ∉ dZ.

Define the automorphism

f = fi : EndT (G)
∼→ EndT (G), f ↦−→ i−1 ◦ Σd (f ) ◦ i.

G Σd (G)

G Σd (G)

i

f (f ) Σd (f )

i−1

End•T (G) � EndT (G) (f , d ), i ↦−→ u



dZ-cluster tilting objects
Definition (Iyama–Yoshino 2008)

A basic object G ∈ T is a d -cluster tilting object if

add(G) = {X ∈ T | ∀0 < i < d , HomT (X ,Σi (G)) = 0}
= {Y ∈ T | ∀0 < i < d , HomT (G ,Σi (Y )) = 0}.

We call G a dZ-cluster tilting object if, moreover,

• ∃ i : G
∼−→ Σd (G) (Geiß–Keller–Oppermann 2013).

G ∈ T is 1Z-cluster tilting ⇐⇒ add(G) = T

Proposition (Iyama–Yoshino 2008)

G ∈ T: dZ-cluster tilting =⇒ thick(G) = T



Triangulated categories with Serre functor

Suppose that ∃ S : T ∼−→ T a Serre functor:

HomT (Y , SX )
∼−→ DHomT (X , Y ), ∀X , Y ∈ T

Proposition (Iyama–Oppermann 2013)

The following are equivalent for a basic d -cluster tilting object G ∈ T:
• G is a dZ-cluster tilting object.
• There is an isomorphism SG � G.
• EndT (G) is self-injective and HomT (Σi (G),G) for 0 < i < d − 1.︸                                          ︷︷                                          ︸

vosnex property

The vosnex property is vacuous for d = 1, 2



Examples of 1Z-cluster tilting objects

Triangulated categories of finite type: add(G) = T

• Stable module categories of
self-injective algebras of finite
representation type.
• Stable categories of maximal
Cohen–Macaulay modules of
complete local Gorenstein
isolated singularities of finite
Cohen–Macaulay type.

• Stable categories of
Gorenstein-projective modules of
finite-dimensional
Iwanaga–Gorenstein algebras of
finite Gorenstein-projective type.
• Cluster categories of hereditary
algebras of finite representation
type.

See F. Muro’s talk next week for more on these.



Examples of 2Z-cluster tilting objects

Amiot cluster categories of self-injective quivers with potential

• (Barot–Kussin–Lenzing 2010,
J .2015) Weighted projective lines
of tubular tubular type ≠ (3, 3, 3).
• (Herschend–Iyama 2011) Certain
planar quivers with potential.
• (Pasquali 2020)
Rotationally-symmetric Postnikov
diagrams on the disk. Figure by Colin Krawchuk

See F. Muro’s talk for important examples from 3-dim birational geometry.



Examples of dZ-cluster tilting objects
Definition (Iyama–Oppermann 2011)

A finite-dimensional algebra if d -representation-finite if it admits a d -cluster
tilting module.

• (Geiß–Leclerc–Schroer 2007 for d = 1, Iyama–Oppermann 2013) Stable module
categories of (d + 1)-preprojective algebras of d -Auslander algebras of type A.
• (Darpö–Iyama 2020) Stable module categories of certain self-injective
d -representation-finite algebras.
• (J–Külshammer 2016) Stable module categories of self-injective d -Nakayama
algebras.
• (Iyama–Oppermann 2013) d -Calabi–Yau Amiot–Guo–Keller cluster categories of
Keller’s derived (d + 1)-preprojective algebras of d -representation-finite algebras
of global dim d .

See the preprint arXiv:2208.14413 (J-Muro) for more examples.

https://arxiv.org/abs/2208.14413


Twisted periodic algebras

Definition (Brenner–Butler, Green–Snashall–Solberg 2003)

A finite-dimensional algebra Λ is twisted (d + 2)-periodic if there exists an au-

tomorphism f : Λ
∼−→ Λ such that

Ωd+2
Λe (Λ) � 1Λf in modΛe .

We say that A is (d + 2)-periodic if f = 1.

(Green–Snashall–Solberg 2003) Twisted periodic algebras are self-injective.

Proposition (Dugas 2012, Hanihara 2020 d = 1, Chan–Darpö–Iyama–Marczinzik)

G: dZ-cluster tilting object =⇒ EndT (G) is twisted (d + 2)-periodic



Twisted fractionally CY algebras
A: finite-dimensional algebra of finite global dimension

The triangulated category Db(modA) admits the Serre functor

S := − ⊗LA DA : Db(modA) ∼−→ Db(modA).

Definition

Let l ≠ 0 and m be integers. The algebra A is twisted fractionally m
�
-Calabi–Yau

if there exists an automorphism q : A
∼−→ A such that

S� � [m] ◦ q∗.

We say that A is fractionally m
�
-Calabi–Yau if q = 1.



Periodic algebras from fractionally CY algebras

T (A) := A n DA the trivial extension of A

Theorem (Chan–Darpö–Iyama–Marczinzik)

A is fractionally CY T (A) is periodic

A is twisted fractionally CY T (A) is twisted periodic
trivial: f=1 trivial: q=1 Open

Suppose that A is ring-indecomposable

Theorem (Herschend–Iyama 2011)

A is d -representation-finite of global dim d =⇒ A is twisted fractionally CY



dZ-cluster tilting objects from twisted periodic algebras

Λ: basic twisted (d + 2)-periodic algebra with respect to f : Λ
∼−→ Λ

Problem 1: Does there exist a differential graded algebra A with H•(A) � Λ(f , d )
and such that A ∈ Dc(A) is a dZ-cluster tilting object?

Problem 2: Suppose that H•(A) � Λ(f , d ). How to determine whether A ∈ Dc(A) is
a dZ-cluster tilting object?

Problem 3: Suppose that H•(A) � Λ(f , d ) and that A ∈ Dc(A) is a dZ-cluster tilting
object.

What additional data is needed to reconstruct A from its cohomology H•(A), at least
up to quasi-isomorphism?
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The Derived Auslander–Iyama Correspondence
Theorem (Muro 2022 for d = 1, J–Muro for d ≥ 1)

Suppose that the field k is perfect. The map

A ↦−→ (H0(A) , H−d (A)) = (HomD(A) (A,A), HomD(A) (A,A[−d ]))

induces a bijection between the following:

1. Quasi-isomorphism classes of DG algebras A such that:
– H0 (A) is a basic finite-dimensional algebra.
– A ∈ Dc (A) is a dZ-cluster tilting object.

2. Pairs (Λ, f ) such that
– Λ is a basic self-injective algebra and
– f : Λ

∼−→ Λ such that Ωd+2
Λe (Λ) ' 1Λf in modΛe ,

up to algebra isomorphisms compatible with

f ∈ Out(Λ) := Aut(Λ)/Inn(Λ). ( H−d (A) � 1H0(A)f )



Constructing the inverse of the correspondence

Λ: twisted (d + 2)-periodic with respect to f : Λ
∼−→ Λ

Λ(f , d ) �
⊕
di∈dZ

f iΛ1, x ∗ y := f j (x)y, |y | = dj

We aim to construct a differential graded algebra A such that

H•(A) � Λ(f , d )

and A ∈ Dc(A) is a dZ-cluster tilting object.

These properties should determine A up to quasi-isomorphism.



Stasheff’s A∞-algebras
An A∞-algebra structure on a graded vector space Λ★

consists of homogeneous morphisms of degree 2 − n

mn : Λ★ ⊗ · · · ⊗ Λ★︸            ︷︷            ︸
n times

−→ Λ★, n ≥ 1,

such that the A∞-equations are satisfied:

∑ ± = 0
ms

mr+1+t

s· · ·

r· · · t· · ·

∑
n=r+s+t (−1)r+stmr+1+t ◦ (1r ⊗ ms ⊗ 1t ) = 0 (n ≥ 1)

m1 ◦ m1 = 0
m1 ◦ m2 = m2 ◦ (m1 ⊗ 1 + 1 ⊗ m1)

m2 ◦ (1 ⊗ m2 − m2 ⊗ 1)︸                         ︷︷                         ︸
Associator for m2

= m1 ◦ m3 + m3 ◦ (m1 ⊗ 1 ⊗ 1 + 1 ⊗ m1 ⊗ 1 + 1 ⊗ 1 ⊗ m1)︸                                                                     ︷︷                                                                     ︸
m (m3 ) in hom(Λ★⊗Λ★⊗Λ★, Λ★) (Λ★,m1 )



Remarks on the definition of A∞-algebras

Λ★ = Λ0 =⇒ mn = 0 for n ≠ 2 for degree reasons.

m1 = 0 =⇒ (Λ★, 0,m2) is an associative graded algebra.

(Λ★,m1,m2): differential graded algebra⇐⇒ (Λ★,m1,m2, 0, . . . ): A∞-algebra.

There are several sign conventions in use: Stasheff, Keller–Lefèvre-Hasegawa∗,
Kontsevich–Merkulov, Fukaya–Seidel.

See Polishchuk’s Field Guide for details.

… one may equivalently consider shifted A∞-structures to dispense with most signs.

https://pages.uoregon.edu/apolish/ainf-signs.pdf


Morphisms between A∞-algebras

An A∞-morphism between A∞-algebras

f : (Λ★
1 ,m

(1) )   (Λ★
2 ,m

(2) )

consists of degree 1 − n morphisms

fn : Λ★
1 ⊗ · · · ⊗ Λ★

1︸            ︷︷            ︸
n times

−→ Λ★
2 , n ≥ 1,

that satisfy the following equations:

∑ ± =

ms

fr+1+t

s· · ·

r· · · t· · ·

∑ ± fi1

i1· · ·
fir

ir· · ·
r· · ·
mr

∑(−1)r+st fr+1+t ◦ (1r ⊗ ms ⊗ 1t ) = ∑(−1)smr ◦ (fi1 ⊗ · · · ⊗ fir ) (n ≥ 1)

We say that f is an A∞-quasi-isomorphism if f1 is a quasi-isomorphism.



Minimal models of differential graded algebras

An A∞-algebra is minimal if m1 = 0.

A minimal model of a differential graded algebra A is an A∞-quasi-isomorphism

f : (H•(A) ,m2,m3,m4,m5, . . . )   A

such that f1 induces the identity in cohomology: H•
(
f1
)
= 1.

Homotopy Transfer Theorem (Kadeishvili 1982)

Every differential graded algebra admits a
minimal model.

H•(A) A
i

p
h

|i | = |p | = 0, |h | = −1
m (i) = 0 m (p) = 0
p ◦ i = 1 m (h) = 1 − i ◦ p

Minimal models are unique up to A∞-isomorphism.



A∞-algebras vs differential graded algebras

A∞-category ≡ A∞-algebra with many objects

Theorem (Lefèvre-Hasegawa 2003, …, Canonaco–Ornaghi–Stellari 2019
Pascaleff 2024)

The canonical functor dgcat → A∞ -cat induces an equivalence of (∞, 1)-
categories after∞-localising at the corresponding classes of quasi-equivalences.

This means that the notions of “differential graded category” and of “A∞-
category” are equivalent in a very strong sense.

• Each A∞-algebra A has a triangulated derived category D(A).
• A∞-quasi-isomorphic A∞-algebras have equivalent derived categories:

A ' B =⇒ D(A) ' D(B)



Constructing the inverse of the Correspondence

Λ: twisted (d + 2)-periodic with respect to f : Λ
∼−→ Λ

Λ(f , d ) �
⊕
di∈dZ

f iΛ1, x ∗ y := f j (x)y, |y | = dj

We aim to construct a minimal A∞-algebra A = (Λ(f , d ),m) such that A ∈ Dc(A) is a
dZ-cluster tilting object.

This property should determine A = (Λ(f , d ),m) up to A∞-isomorphism.

See F. Muro’s talk for details on the existence of such an A.



Minimal A∞-structures on Yoneda algebras of simples

Theorem (Keller 2001)

A: basic finite-dimensional algebra

S = S1 ⊕ · · · ⊕ Sn direct sum of the simple A-modules

Every minimal model of RHomA (S , S) is generated in deg 0 and 1 as A∞-algebra.

See arXiv:2402.14004 (J) for a proof using AR theory of Nakayama algebras.

A = k[x]/(x� ), � ≥ 3

Ext•A (S , S) � k[Y, t]/(Y2), |Y | = 1 and |t | = 2

m� (Y, Y, . . . , Y) = ±t and mk = 0 for k ≠ 2, � S

S
S

S
S
S

S

S
S

S
S
S

S

S
S

S
YYY

https://arxiv.org/abs/2402.14004


Minimal A∞-structures on Yoneda algebras of simples

Theorem (Keller 2001)

A = kQ/I : finite-dimensional algebra

S = S1 ⊕ · · · ⊕ Sn direct sum of the simple A-modules

(Ext•A (S , S), 0) is a minimal model of RHomA (S , S) ⇐⇒ A is Koszul

Sketch of proof of the theorem:

(=⇒) Immediate from the previous theorem.

(⇐=) Bigraded Homotopy Transfer Theorem.

∀n ≥ 0 ∀i ≠ n

ExtnGrA (S , S 〈i〉) = 0

See Jan Thomm’s talk for A∞-structures on Yoneda algebras of rep. generators.

Question: What is the significance of the first non-vanishing higher operation?



An old example, revisited

A = k[x]/(x3), G = S ⊕ S
S ∈ modA, add(G) = modA

Λ = EndA (G) � k( S S
S

a

b
)/(ba, ab) = Π(A2)

(Schofield, Erdmann–Snashall 1998, Brenner–Butler–King 2002)

The preprojective algebra Π(A2) is twisted 3-periodic w.r.t.

f ( S ) = S
S , f ( SS ) = S , f (a) = −b, f (b) = −a.

S

S
S

S
S
S

S

S
S

S
S
S

S

S
S

S

a ab

X

YYY

(End•A (G),m): minimal A∞-algebra

m3(Y, Y, Y) = t S m3(X, X, X) = t S
S

m3(Y, b, a) = 1S m3(X, a, b) = 1 S
S



The Hochschild cochain complex

The bigraded Hochschild (cochain) complex of a graded algebra Λ★ has components

Cp,q (Λ★) = Cp,q (Λ★,Λ★) := Homk((Λ★)⊗p,Λ★[q]) p ≥ 0, q ∈ Z.

Thus, a (p, q)-Hochschild cochain is a degree q morphism of
graded vector spaces

c : Λ★ ⊗ · · · ⊗ Λ★︸            ︷︷            ︸
p times

−→ Λ★. c

p· · ·

The bidegree (1, 0) Hochschild differential is, for c ∈ Cp,★ (Λ★),

dHochc (x1, . . . , xp, xp+1) := ±x1c (x2, . . . , xp+1) +
∑p

i=1 ±c (. . . , xixi+1, . . . , ) + ±c (x1, . . . , xp)xp+1



The Hochschild cochain complex (cont.)

For c1 ∈ Cp,q (Λ★) and c2 ∈ Cs,t (Λ★) define c1{c2} ∈ Cp+s−1,q+t (Λ★) by

c1{c2}(x1, . . . , xp+s−1) :=
∑p

i=1 ±c1(. . . , xi−1, c2(xi , . . . , xi−1+s), xi+s , . . . )

• The bidegree (−1, 0) Gerstenhaber bracket is

[c1, c2] := c1{c2} ± c2{c1}.

• The bidegree (0, 0) cup product is

c1 · c2 = c1 ⌣ c2 := ±m2{c1, c2},

where m2 : Λ★ ⊗Λ★→ Λ★ is the multiplication.

c1

p· · ·

c2

s· · ·

m2

m2{c1, c2}



Hochschild cohomology of graded algebras

The Hochschild cohomology of Λ★ is the cohomology of the Hochschild complex:

HH•,★(Λ★) := H•,★
(
C•,★ (Λ★)

)
� Ext•,★Λ★ -bimod(Λ

★,Λ★)

The Hochschild cohomology is a Gerstenhaber algebra w.r.t the total degree • +★:

• HH•,★(Λ★)[1] is a graded Lie
algebra with the Gerstenhaber
bracket.
• HH•,★(Λ★) is a graded
commutative algebra with the
cup product.
• The Gerstenhaber square
Sq(c) induced by c ↦−→ c{c}.

Sq(x + y) = Sq(x) + Sq(y) + [x, y]
Sq(x · y) = Sq(x) · y2 + x · [x, y] · y + x2 · Sq(y)
[Sq(x), y] = [x, [x, y]]

In char(k) ≠ 2, Sq(x) = 1
2 [x, x] .



Minimal A∞-algebras, revisited
A minimal A∞-algebra structure on Λ★ consists of Hochschild cochains

mn ∈ Cn,2−n (Λ★
)
, n ≥ 3,

such that the (formal) Hochschild cochain

m = (m3,m4,m5, . . . ) ∈
∏
n≥3

Cn,★ (
Λ★

)
satisfies the Maurer–Cartan equation

dHoch(m) = ±m{m}.

dHoch(mn) = 0 if mk = 0 for 2 < k < n

Shifted A∞-structures are implicit here.
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∏
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The universal Massey product

A graded algebra is d -sparse if it is concentrated in degrees dZ.

Definition

The universal Massey product (UMP) of a d -sparse minimal A∞-algebra (Λ★,m)
is the Hochschild class

md+2 ∈ HHd+2,−d (Λ★)

of the first possibly non-trivial higher operation.

The UMP satisfies Sq(md+2) = 0 and is invariant under A∞-isomorphisms.

Remark: For d = 1, Benson–Krause–Schwede (2004), Keller (2005, 2006), …



The restricted universal Massey product

j : Λ := Λ0 ↩−→ Λ★ inclusion of the degree 0 component

j∗ : HH•,★(Λ★,Λ★) −→ HH•,★(Λ,Λ★)

Definition

The restricted universal Massey product (rUMP) of a d -sparse minimal A∞-
algebra (Λ★,m) is the Hochschild class

j∗(md+2) ∈ HHd+2,−d (Λ,Λ★).

HHd+2,−d (Λ,Λ★) � HHd+2(Λ,Λ−d ) � Extd+2Λ -bimod(Λ,Λ
−d )



The Unit Theorem

Λ: twisted (d + 2)-periodic w.r.t. f : Λ ∼−→ Λ

A = (Λ(f , d ),m): minimal A∞-algebra

Theorem (J–Muro)

Suppose that k is perfect. The following are equivalent:

1. A ∈ Dc(A) is a dZ-cluster tilting object.

2. The rUMP

j∗(md+2) ∈ HHd+2(Λ, 1Λf ) � HomΛe(Ωd+2
Λe (Λ), 1Λf )

is invertible in modΛe.

3. j∗(md+2) is invertible in Hochschild–Tate cohomology HH•,★(Λ,Λ★).

j∗(md+2) = 0 is an isomorphism =⇒ Λ is semi-simple



The bijectivity of the correpondence

Λ: twisted (d + 2)-periodic w.r.t. f : Λ ∼−→ Λ

Theorem (J–Muro)

1. There exists a minimal A∞-algebra structure (Λ(f , d ),m) s.t. the rUMP

j∗(md+2) ∈ HHd+2(Λ, 1Λf ) � HomΛe(Ωd+2
Λe (Λ), 1Λf )

is invertible in modΛe.

2. Any two minimal A∞-algebras as above are A∞-isomorphic.

See F. Muro’s talk next week for more details on this and the previous theorem,
where the crucial role of Geiß–Keller–Oppermann (d + 2)-angulated categories
will be explained.



Kadeishvili’s Intrinsic Formality Criterion, revisited

Theorem (Kadeishvili 1988)

Suppose that
HHp+2,−p (Λ★) = 0, p > 0.

Then, every minimal A∞-structure on Λ★ is A∞-isomorphic to (Λ★, 0).

m3 ∈ HH3,−1(Λ★) = 0 =⇒ ∃ f2 ∈ C2,−1 (Λ★) such that ±dHoch(f2) = m3.

(1, f2, 0, . . . ) : (Λ★,m3,m4,m5, . . . )   (Λ★, 0,m′4,m
′
5, . . . )

Aim: Generalise Kadeishvili’s Theorem to deal with the case

0 ≠ md+2 ∈ HHd+2,−d (Λ★).



d -sparse Massey algebras

A graded algebra is d -sparse if it is concentrated in degrees dZ.

Definition (J–Muro)

A d -sparse Massey algebra is a pair (Λ★, c) consisting of:

• A d -sparse graded algebra Λ★.
• A Hochschild class

c ∈ HHd+2,−d (Λ★)

such that Sq(c) = 0. Figure by DALL·E

(Λ★,m): d -sparse min. A∞-algebra =⇒ (Λ★,md+2): d -sparse Massey algebra



The Hochschild–Massey complex of a Massey algebra

Aim: Generalise Kadeishvili’s Theorem to d -sparse Massey algebras.

The Hochschild–Massey complex of a d -sparse Massey algebra (Λ★, c) is

Cp,q (Λ★, c) := HHp,q (Λ★) p ≥ 0, q ∈ Z.

The bidegree (d + 1,−d ) Hochschild–Massey differential is (almost everywhere)

x ↦−→ [c, x] .

The Hochschild–Massey cohomology of (Λ★, c) is

HH•,★(Λ★, c) := H•,★
(
C•,★ (Λ★, c)

)
.



A Kadeishvili-type theorem for sparse Massey algebras

(Λ★, c): d -sparse Massey algebra

Theorem (J–Muro)

Suppose that

HHp+2,−p (Λ★, c) = 0, p > d . (††)

Then, any two minimal A∞-algebras

(Λ★,m(1)d+2,m
(1)
2d+2, . . . ) and (Λ★,m(2)d+2,m

(2)
2d+2, . . . )

such that md+2
(1) = c = md+2

(2) are (gauge) A∞-isomorphic.



Recovering Kadeishvili’s Theorem

(Λ★, c): d -sparse Massey algebra

HHp+2,−p (Λ★, 0) = 0, p > d ⇐⇒ HHp+2,−p (Λ★) = 0, p > d

If this condition is satisfied, the theorem shows that a minimal A∞-algebra (Λ★,m)
such that md+2 = 0 is formal.

Proof of Kadeishvili’s Thm: Let Λ★ be a (1-sparse) graded algebra such that

HHp+2,−p (Λ★) = 0, p > 0.

• The vanishing for p = 1 implies (Λ★, 0) is the unique Massey algebra structure.
• The vanishing for p > 1 implies the Kadeishvili-type theorem applies.



On the proof of the Kadeishvili-type Theorem

(Λ★,m3,m4,m5, . . . ): minimal A∞-algebra

The equations of an A∞-morphism imply that an arbitrary collection

f1 = 1, f2 ∈ C2,−1 (Λ★
)
, f3 ∈ C3,−2 (Λ★

)
, . . .

determines a unique minimal A∞-algebra structure

(Λ★,m′3,m
′
4,m

′
5, . . . )

such that
f = (1, f2, f3, . . . ) : (Λ★,m)   (Λ★,m′)

is an A∞-isomorphism.

For example, m′3 = m3 ± dHoch(f2)



On the proof of the Kadeishvili-type Theorem (cont.)

The group of gauge A∞-isomorphisms

G(Λ★) := {f ∈ ∏∞n=1 Cn,1−n (Λ★) | f1 = 1}

acts on the set of minimal A∞-structures on Λ★.

Tautologically, two minimal A∞-structures are gauge A∞-isomorphic if and only if they
have the sameG(Λ★)-orbit.

Question: How can we leverage this observation?

The set of minimal A∞-algebra structures on Λ★ are the vertices of a CW complex
A∞(Λ★) whose 1-cells are the gauge A∞-isomorphisms!

TheG(Λ★)-orbits are the path-connected components c0(A∞(Λ★)).



With a little help from my friends
The CW complex A∞(Λ★) is the homotopy limit of a tower of fibrations

A∞(Λ★) ' holimAn(Λ★) −→ · · · −→ An(Λ★) −→ · · · −→ A4(Λ★) −→ A3(Λ★)

where An(Λ★) is the CW complex of minimal An-algebra structures on Λ★:

• A minimal A3-algebra structure consists of a Hochschild cochain m3 ∈ C3,−1 (Λ★).
• A minimal A4-algebra structure consists of a Hochschild cocycle m3 ∈ C3,−1 (Λ★)
and a Hochschild cochain m4 ∈ C4,−2 (Λ★).
• …

We can leverage techniques from Algebraic Topology / Homotopy Theory
such as the Milnor exact sequence

∗ −→ lim←−
1 c1(An(Λ★)) −→ c0(A∞(Λ★)) −→ lim←− c0(An(Λ★)) −→ ∗



There is a spectral sequence …
The existence of Milnor exact sequences

∗ −→ lim←−
1 ck+1(An(Λ★)) −→ ck (A∞(Λ★)) −→ lim←− ck (An(Λ★)) −→ ∗

can be leveraged thanks to the (fringed) Bousfield–Kan spectral sequence (1972) of
the tower

A∞(Λ★) ' holimAn(Λ★) −→ · · · −→ An(Λ★) −→ · · · −→ A4(Λ★) −→ A3(Λ★)

Idea of proof of the Kadeishvili-type theorem:
• Two d -sparse minimal A∞-algebra structures (Λ★,m(1) ) and (Λ★,m(2) ) such that

md+2
(1) = md+2

(2)

lie in the pointed kernel of the map c0(A∞(Λ★)) −→ lim←− c0(A∞(Λ
★)).

• Condition (††) yields the vanishing of lim←−
1 c1(An(Λ★)) — this uses Muro’s

extended Bousfield–Kan spectral sequece (2020).



Muro’s extended Bousfield–Kan spectral sequence

2r−3r−2

s

t

Figure by Fernando Muro

A∞(Λ★) ' holimAn(Λ★)

• Pointed sets along the line t − s = 0
• Groups along the line t − s = 1
• Abelian groups elsewhere in the red region
• Vector spaces in the extended blue region

E p,p
d+2 = HHp+2,−p (Λ★, c) p > d

c0(A∞(Λ★)) � lim←− c0(An(Λ★)



Concluding remarks and an invitation

Working with minimal A∞-algebras instead of differential graded algebras provides
access to new invariants and thus we may formulate new properties:

“The rUMP of the d -sparse minimal A∞-algebra (Λ(f , d ),m) is invertible.”

I invite the audience to consider the following questions:

Let A be a differential graded algebra such that A ∈ Dc(A) is a generator of a
preferred type (P), for example a d -cluster tilting object.

Question 1: Can we detect property (P) in terms of the minimal models of A?

Question 2: Is there a derived correspondence for generators of type (P)?

Question 3: Are there properties of a minimal A∞-algebra A that imply an inter-
esting novel property of A ∈ Dc(A)?



The Kontsevich–Soibelman perspective
A minimal A∞-algebra structure on a graded algebra Λ★

m ∈ ∏n≥3 Cn,2−n (Λ★)

has total degree 1 in the differential graded Lie algebra C•,★ (Λ★) [1] and is a solution
to the Maurer–Cartan equation

dHoch(m) = ±m{m}
char k≠2
= ± 1

2 [m,m] .

“An A∞-algebra is the same as a non-commutative formal graded manifold X over, say, field k, having a marked k-point pt equipped with
[a degree 1 homological vector field]. … It is an interesting problem to make a dictionary from the pure algebraic language of A∞-algebras
and A∞-categories to the language of non-commutative geometry.”

Kontsevich–Soibelman (2009)

Perhaps certain qualitative properties of such vector fields allow to extend the
dictionary to include some aspects of the representation theory of FD algebras!
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