

Reconstruction theorems

₹ ~	
77/6	
1555	

Y		E 2
7	Se l	7
	کِ	
111	TE	*

7		
	188	
	1	7
$\overline{}$	$\overline{}$	_

Setup and motivation

k: perfect field

T: k-linear triangulated cat

- idempotent complete
- Hom-finite

 $G \in \mathfrak{T}$: (basic) classical generator

Aim: Reconstruct \mathfrak{T} from G as a triangulated category

In general,

$$\mathfrak{T} \not\simeq \mathsf{D}^\mathsf{c}(\mathfrak{T}(G,G))$$

and

$$\mathfrak{T} \not\simeq \mathsf{D}^\mathsf{c}(\mathfrak{T}(G,G)^\bullet)$$

where

$$\mathfrak{T}(G,G)^{\bullet} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{T}(G,G[i])$$

Tautological solution via DG algebras

T: algebraic triangulated category

Keller (1994) ∃ A DG algebra s.t.

$$\mathcal{T} \stackrel{\simeq}{\longrightarrow} \mathsf{D}^{\mathsf{c}}(A)$$
$$G \longmapsto A$$

and $H^{\bullet}(A) \cong \mathfrak{T}(G,G)^{\bullet}$

Q: When is *A* unique up to qiso?

Meta Theorem

A, B: DG algs with $H^{\bullet}(A) \cong H^{\bullet}(B)$

$$(?) \Longrightarrow A \simeq B \Longrightarrow D^{c}(A) \simeq D^{c}(B)$$

Condition (?) should be

- of elementary character
- sufficiently general
- valid in interesting examples

$d\mathbb{Z}$ -cluster tilting objects ($d \ge 1$)

Suppose that A satisfies

1.
$$\varphi : A \cong A[d]$$
 in $D^{c}(A)$

2.
$$i \notin d\mathbb{Z} \implies H^i(A) = 0$$

Then

$$H^{\bullet}(A) \cong \bigoplus_{di \in d\mathbb{Z}} \sigma^{i} \Lambda_{1}$$

where

$$\Lambda := H^0(A)$$
 and $\sigma(a) = \varphi^{-1}a\varphi$

Iyama–Yoshino (2008) Suppose now that $H^0(A)$ is finite-dimensional and

3.
$$M \in \operatorname{add}(A) \Leftrightarrow \operatorname{Hom}_A(A, M[k]) = 0$$

 $M \in \operatorname{add}(A) \Leftrightarrow \operatorname{Hom}_A(M, A[k]) = 0$

for 0 < k < d.

We say that $A \in D^{c}(A)$ is a $d\mathbb{Z}$ -cluster tilting object if it satisfies 1–3.

Rmk:
$$1\mathbb{Z}$$
-CT \iff add(A) = $D^{c}(A)$

... more on $d\mathbb{Z}$ -cluster tilting objects

 $A \in D^{c}(A)$ $d\mathbb{Z}$ -cluster tilting

 $\Lambda = H^0(A)$ basic finite-dimensional

Heller (1966), Freyd (1968), Geiß-Keller-Oppermann (2013)

 Λ is a Frobenius algebra

Green-Snashall-Solberg (2003), Hanihara (2020)

 Λ is twisted (d+2)-periodic w.r.t. σ ,

$$\Omega_{\Lambda^e}^{d+2}(\Lambda) \simeq {}_1\Lambda_{\sigma} \quad \text{in} \quad \underline{\text{mod}}(\Lambda^e)$$

The Triangulated Auslander–Iyama Correspondence

There are bijective correspondences between the following objects:

DG algebras A such that $A \in D^{c}(A)$ is $d\mathbb{Z}$ -cluster tilting up to quasi-isomorphism

Pairs (\mathfrak{T}, G) where $G \in \mathfrak{T}$ is $d\mathbb{Z}$ -cluster tilting and \mathfrak{T} is algebraic up to exact equivalence preserving $\mathsf{add}(()G)$

Pairs (Λ, σ) where Λ is twisted (d+2)-periodic w.r.t σ up to algebra isomorphism preserving $[\sigma] \in \text{Out}(\Lambda)$

Rmk: The case d = 1, where $add(A) = D^{c}(A)$, is due to Muro

The Donovan–Wemyss Conjecture

	1			
111		Z	P	1

Compound Du Val singularities

Reid (1983) $R \cong \mathbb{C}[\![u,v,x,t]\!]/(f)$ is a compound Du Val singularity (cDV) if

$$f(u, v, x, t) = g(u, v, x) + t \cdot h(u, v, x, t)$$

and g = 0 is the equation of a Kleinian surface singularity, e.g.

$$g(u, v, x) = u^2 + v^2 + x^{n+1}$$
 (type \mathbb{A}_n)

- Fundamental class of 3-dimensional singularities
- Important in the Minimal Model Program for 3-folds

Today: Focus on case where

- *R* has isolated singularities
- Spec(R) admits a resolution

Contraction algebras

$$p \colon Y \to X = \operatorname{Spec}(R)$$
 crepant resolution $F = p^{-1}(o)$ red exc fibre crepant: $p^*(\omega_X) = \omega_Y$ resolution: Y is smooth and p is birational, isomorphism in $Y \setminus F$

 \Longrightarrow $F = C_1 \cup \cdots \cup C_n$ is a tree of rational curves in Y

Donovan–Wemyss (2013) The non-commutative deformations of

$$\mathcal{O}_{C_1} \oplus \cdots \oplus \mathcal{O}_{C_1} \in \mathsf{coh}(Y)$$

are represented by a finite-dimensional algebra $\Lambda = \Lambda(p)$, the contraction algebra

The Classification Conjecture

$$p_1: Y_1 \to X_1 = \operatorname{Spec}(R_1)$$
 and $p_2: Y_2 \to X_2 = \operatorname{Spec}(R_2)$ crepant resolutions of isolated cDV singularities

 $\Lambda_1 = \Lambda(p_1)$ and $\Lambda_2 = \Lambda(p_2)$ their contraction algebras

Donovan–Wemyss (2013)
$$D^{c}(\Lambda_{1}) \simeq D^{c}(\Lambda_{2}) \stackrel{?}{\Longrightarrow} R_{1} \cong R_{2}.$$

Wemyss (2018) + Dugas (2015) Different p's yield derived eq contraction algebras

Contraction algebras via 2Z-cluster tilting objects

R isolated cDV singularity with crepant resolution

$$D_{sg}(R) = D^b(\text{mod }R)/D^c(R)$$
 singularity category

 \implies $D_{sg}(R)$ is an algebraic \mathbb{C} -linear triangulated cat with split idempotents

Moreover, $D_{sg}(R)$ is 2-periodic: [2] \cong id

Wemyss (2018) The endomorphism algebras of $2\mathbb{Z}$ -cluster tilting objects in $D_{sg}(R)$ are precisely the contraction algebras of R

August (2020) The contraction algebras of R form a single and complete derived equivalence class of algebras

Proof of the Classification Conjecture

R isolated cDV singularity with crepant resolution

 $\mathfrak{D}_{sg}(\textit{R})$ canonical DG enhancement of $D_{sg}(\textit{R})$

Hua–Keller (2018) The DG category $\mathcal{D}_{sg}(R)$ determines R up to isomorphism:

$$HH^{0}(\mathcal{D}_{sg}(R)) \cong \frac{\mathbb{C}[\![u,v,x,t]\!]}{\left(f,\frac{\partial f}{\partial u},\frac{\partial f}{\partial v},\frac{\partial f}{\partial x},\frac{\partial f}{\partial t}\right)}$$

is the Tyurina algebra of R, which determines R since we know dim R

Triangulated Auslander–Iyama Correspondence $D_{sg}(R)$ is uniquely determined as an enhanced triangulated category by any contraction algebra of R

LUND UNIVERSITY

Extra: The key theorem

$$\Lambda$$
 twisted $(d+2)$ -periodic w.r.t. σ

$$\Lambda(\sigma,d) = \bigoplus_{di \in d\mathbb{Z}} \sigma^i \Lambda_1, \qquad a \cdot b = \sigma^j(a)b, \quad |b| = dj$$

$$j^* \colon HH^{\bullet,d\star}(\Lambda(\sigma,d),\Lambda(\sigma,d)) \longrightarrow HH^{\bullet,d\star}(\Lambda,\Lambda(\sigma,d)) \cong \mathsf{Ext}^{\bullet}_{\Lambda^e}(\Lambda,{}_{\sigma^{\star}}\Lambda_1)$$

J–Muro There exists an essentially unique minimal A_{∞} -algebra structure

$$(\Lambda(\sigma,d), m_{d+2}, m_{2d+2}, m_{3d+2}, \ldots)$$

such that $j^*\{m_{d+2}\} \in HH^{d+2,-d}(\Lambda,\Lambda(\sigma,d))$ is a unit in $\underline{HH}^{\bullet,\star}(\Lambda,\Lambda(\sigma,d))$