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A bird’s-eye view on algebraic structures

Mathematical objects --------------- ¥+ Algebraic structures
X — topological space 71 (X, x) — fundamental group
M - smooth manifold Q(M) — algebra of differential forms
V — complex variety C[V] - coordinate ring
G - Lie group Lie(G) — Lie algebra

Properties of the mathematical objects
should be reflected in properties of the associated algebraic structures
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Q: What differentiates these
configurations from each other? Consider now the Borromean rings:

Q: What differentiates them from
A: The circles in the Hopf link three unlinked circles?
(bottom) are, well, linked.
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Brackets and trees




The combinatorics of the associativity equation

The familiar associativity equation
Theorem (Catalan 1838)

There are precisely

1 (2n
C”_n+1(n)

(ab)c = a(bc)

is the source of rich combinatorics:

1:(ab)
2 : (ab)c, a(bc)
5: ((ab)a)d), ((a(bc))d), a((bo)d),
a(b(cd)), (ab)(cd) The number G, is called the n-th
14 a(b(c(de)), a(b((cd).e), ... Catalan number: 1, 1, 2, 5, 14, 42,
132,429, 1430, 4862, 16796, ...

different ways to correctly
parenthesise a word on n + 1 letters.
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From associativity to dendrology

The previous equation suggests a /ocal
transformation on a binary tree, called
a b a ﬂlp

ab \<( . \F/

The associativity equation becomes

Depict the binary operation as a tree:

3 b c 3 b c Qbserve that gontracting the unique
internal edge in the above trees yields
the (non-binary!) tree

(ab)c a(bo) \V
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From associativity to dendrology II

((ab)oyd K(/
/ \ )N
((a(bc))d (ab)(cd) \{/ V V
AT

a(b(cd)) \F/ V \?y

a((bo)d)
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The Associahedron

Theorem (Tamari 1951, Stasheff 1963, Loday 2004)

There is a convex polytope Kn.1 of dimension n — 1 whose k-dimensional cells are in
bijection with planar rooted trees with n + 1 leaves and n — k internal vertices.

Moreover, there is an edge between two vertices if and only if the corresponding
binary trees are related by a single flip.

Kp41 is called the Associahedron of dimension n — 1
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The Associahedron K

a((bc)(de))

v

(a(bc))(de) a(((bc)d)e)

((ab)c)(de) \\ // a((b(cd))e)

(a(bc))d)e 4\—9 (a((bc)d))e

\ /

(((ab)c)d)e (a(b(cd)))e

A
I
|
|
|
|
|
|
|

((ab)(cd))e

al(beXde))

l

a(blclde)))
(albehide) al((be)d)e)

Aab)clde)) a(bl(cd)e)) ,

(lab)e)de) . a((bled))e)
(ab)icd)e)

(((ab)e)d)e (a(b‘(cd)))e

((ab)ed))e

Exercise: Label the faces of K5 with planar trees.
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Planar trees as multi-operations

Interpret the rooted corolla with r We also consider a unary operation
leaves as an operation with r inputs:
ar— ,u1(a) = d(a)
a1 ar [N ar

\/ corresponding to a planar rooted tree
with one leaf:

ur(@r,az, ..., ar)
a
By combining these, each planar .
rooted tree yields a multi-operation: d(a)

a b C d .
We decorate the tree with a e to

remember that something happens as

we flow through the tree
u3(p2(a,b), ¢.d)
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The As-equations (Stasheft 1963)

a a b a b a b
: = \/ - \/ - \( =0
d(d(a)) d(ab) d(a)b ad(b)
Leibniz rule

a b a b a b a b a b a b
\y N \V N \{/ N \V _ Y B \/

d(p3(a,b,0)) u3(d(a), b,0) u3(a,d(b),0) u3(a,b,d(0)) a(bo) (ab)c

d(u3(a,b,0)

O(V) = V= ey oy B0y -

In general, the RHS is indexed by the boundary of the associahedron.
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Back to the Borromean rings




Q: What differentiates these
configurations from each other? Consider now the Borromean rings:

Q: What differentiates them from
A: The circles in the Hopf link three unlinked circles?
(bottom) are, well, linked.
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'The Hopf link, revisited

Let X be the complement of the Hopf link
in the 3-sphere. The singular cohomology
of Xis

HO(X:R) = R,
H'(X;R) = Ra ® RB,
H?(X:R) = R.

Moreover, the cup product uy(a, 8) # 0.

The complement of two unlinked circles
has isomorphic cohomology, but

“Z(Q’ ﬁ) =0.
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Aco-structure on singular cohomology

The singular cohomology
H*(X;R) = é HP(X;R)
p=0
of a space X is endowed with multi-operations
d= w1, p2,p3, ..
that satisfy the A.-equations, where
d=0 and wuy =cup product.

What do the higher operations tell us about
the space X?
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Massey’s beautiful theorem

Let X be the complement of the
Borromean rings in the 3-sphere.

HO(X:R) = R,
H'(X;R) = Ra ® RB & Ry,
H*(X:R) =R @ R.

However,

u2(a, B) = p2(a,y) = u2(B,y) =0

and the same is true for the
complement of three unlinked circles.

Theorem (Massey 1969)

Let X be the complement of the
Borromean rings in the 3-sphere.
Then,

us(a,B,y) #0.

In the case of the complement of
three unlinked circles one has

us(a,B,y) =0.

First (?) proof that the Borromean
rings are non-trivial.
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Ac-structures in my research




The Donovan—Wemyss Conjecture

m nd Du Val - .
Compound Du Val . % Finite-dim algebras
singularities + cond. Donovan-Wemyss

X — cDV singularity A(X, p) — contraction algebra

(Donovan-Wemyss 2013) AX,p) % A(Y, Q) = X=aY

(Wemyss 2018, Hua—Keller 2018, August 2020)
Reduced the DW Conjecture to an algebraic problem

2022: Algebraic problem solved with Fernando Muro using A.-structures!

The conjecture holds!
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