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A bird’s-eye view on algebraic structures

Mathematical objects Algebraic structures

X – topological space 𝜋1(X, x) – fundamental group

M – smooth manifold Ω(M) – algebra of differential forms

V – complex variety C[V] – coordinate ring

G – Lie group Lie(G) – Lie algebra

Properties of the mathematical objects
should be reflected in properties of the associated algebraic structures

G. Jasso Brackets, trees and the Borromean rings 1



Q: What differentiates these
configurations from each other?

A: The circles in the Hopf link
(bottom) are, well, linked.

Consider now the Borromean rings:

Q: What differentiates them from
three unlinked circles?

Image credit: Jim.belk, Public domain, via Wikimedia Commons
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Brackets and trees



The combinatorics of the associativity equation
The familiar associativity equation

(ab)c = a(bc)

is the source of rich combinatorics:

1 : (ab)
2 : (ab)c, a(bc)
5 : ((ab)c)d), ((a(bc))d), a((bc)d),

a(b(cd)), (ab)(cd)
14 : a(b(c(de)), a(b((cd), e), . . .

Theorem (Catalan 1838)

There are precisely

Cn =
1

n + 1

(
2n
n

)
different ways to correctly
parenthesise a word on n + 1 letters.

The number Cn is called the n-th
Catalan number: 1, 1, 2, 5, 14, 42,
132, 429, 1430, 4862, 16796, …

Image credit: Emile Delperée, Public domain, via Wikimedia Commons
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From associativity to dendrology

Depict the binary operation as a tree:

a b

ab

The associativity equation becomes

a b c

(ab)c

=

a b c

a(bc)

The previous equation suggests a local
transformation on a binary tree, called
a flip:

Observe that contracting the unique
internal edge in the above trees yields
the (non-binary!) tree
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From associativity to dendrology II

(ab)(cd)

((ab)c)d

((a(bc))d

a((bc)d) a(b(cd))
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The Associahedron

Theorem (Tamari 1951, Stasheff 1963, Loday 2004)

There is a convex polytope Kn+1 of dimension n − 1 whose k-dimensional cells are in
bijection with planar rooted trees with n + 1 leaves and n − k internal vertices.

Moreover, there is an edge between two vertices if and only if the corresponding
binary trees are related by a single flip.

Kn+1 is called the Associahedron of dimension n − 1
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The Associahedron K5

Exercise: Label the faces of K5 with planar trees.

Image credit: Nilesj, CC0, via Wikimedia Commons
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Planar trees as multi-operations

Interpret the rooted corolla with r
leaves as an operation with r inputs:

a1 a2 · · · ar

𝜇r(a1, a2, . . . , ar)

By combining these, each planar
rooted tree yields a multi-operation:

a b c d

𝜇3(𝜇2(a, b), c, d)

We also consider a unary operation

a ↦−→ 𝜇1(a) =: d(a)

corresponding to a planar rooted tree
with one leaf:

a
•

d(a)

We decorate the tree with a • to
remember that something happens as
we flow through the tree
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The A∞-equations (Stasheff 1963)
a

d(d(a))= 0
a b

d(ab)
−

a b

d(a)b
−

a b

ad(b)
= 0

Leibniz rule

a b c

d(𝜇3(a, b, c))

+
a b c

𝜇3(d(a), b, c))

+
a b c

𝜇3(a,d(b), c)

+
a b c

𝜇3(a, b,d(c))

=
a b c

a(bc)

−
a b c

(ab)c

𝜕 (𝜇3(a, b, c))

𝜕 ( ) = − + − − 𝜕 ( ) = · · ·

In general, the RHS is indexed by the boundary of the associahedron.
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Back to the Borromean rings



Q: What differentiates these
configurations from each other?

A: The circles in the Hopf link
(bottom) are, well, linked.

Consider now the Borromean rings:

Q: What differentiates them from
three unlinked circles?

Image credit: Jim.belk, Public domain, via Wikimedia Commons
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The Hopf link, revisited
Let X be the complement of the Hopf link
in the 3-sphere. The singular cohomology
of X is

H0(X;R) � R,
H1(X;R) � R𝛼 ⊕ R𝛽,
H2(X;R) � R.

Moreover, the cup product 𝜇2(𝛼, 𝛽) ≠ 0.

The complement of two unlinked circles
has isomorphic cohomology, but

𝜇2(𝛼, 𝛽) = 0.

Image credit: Niles Johnson, CC BY-SA 4.0, via Wikimedia Commons
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A∞-structure on singular cohomology
The singular cohomology

H∗(X;R) =
∞⊕
p=0

Hp(X;R)

of a space X is endowed with multi-operations

d = 𝜇1, 𝜇2, 𝜇3, . . .

that satisfy the A∞-equations, where

d = 0 and 𝜇2 = cup product.

What do the higher operations tell us about
the space X?
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Massey’s beautiful theorem

Let X be the complement of the
Borromean rings in the 3-sphere.

H0(X;R) � R,
H1(X;R) � R𝛼 ⊕ R𝛽 ⊕ R𝛾,
H2(X;R) � R ⊕ R.

However,

𝜇2(𝛼, 𝛽) = 𝜇2(𝛼, 𝛾) = 𝜇2(𝛽, 𝛾) = 0

and the same is true for the
complement of three unlinked circles.

Theorem (Massey 1969)

Let X be the complement of the
Borromean rings in the 3-sphere.
Then,

𝜇3(𝛼, 𝛽, 𝛾) ≠ 0.

In the case of the complement of
three unlinked circles one has

𝜇3(𝛼, 𝛽, 𝛾) = 0.

First (?) proof that the Borromean
rings are non-trivial.
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A∞-structures in my research



The Donovan–Wemyss Conjecture

Compound Du Val
singularities + cond.

Finite-dim algebras
Donovan–Wemyss

X – cDV singularity Λ(X, p) – contraction algebra

(Donovan–Wemyss 2013) Λ(X, p) der∼ Λ(Y, q) ?
=⇒ X � Y

(Wemyss 2018, Hua–Keller 2018, August 2020)
Reduced the DW Conjecture to an algebraic problem

2022: Algebraic problem solved with Fernando Muro using A∞-structures!

The conjecture holds!
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