

Brackets, trees and the Borromean rings

Gustavo Jasso Centre for Mathematical Sciences

A bird's-eye view on algebraic structures

Properties of the mathematical objects should be reflected in properties of the associated algebraic structures

Q: What differentiates these configurations from each other?

A: The circles in the Hopf link (bottom) are, well, linked.

Consider now the Borromean rings:

Q: What differentiates them from three unlinked circles?

Image credit: Jim.belk, Public domain, via Wikimedia Commons

Brackets and trees

The combinatorics of the associativity equation

Image credit: Emile Delperée, Public domain, via Wikimedia Commons

The familiar associativity equation

 $(ab)c = a(bc)$

is the source of rich combinatorics:

- 1 : (*ab*)
- 2 : (*ab*)*c, a*(*bc*)
- 5 : ((*ab*)*c*)*d*)*,* ((*a*(*bc*))*d*)*, a*((*bc*)*d*)*, a*(*b*(*cd*))*,* (*ab*) (*cd*)
- 14 : *a*(*b*(*c*(*de*))*, a*(*b*((*cd*)*, e*)*, . . .*

Theorem (Catalan 1838)

There are precisely

$$
C_n = \frac{1}{n+1} \binom{2n}{n}
$$

different ways to correctly parenthesise a word on n + 1 *letters.*

The number *Cⁿ* is called the *n*-th Catalan number: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, …

From associativity to dendrology

Depict the binary operation as a tree:

The associativity equation becomes

The previous equation suggests a *local* transformation on a binary tree, called a flip:

Observe that contracting the unique internal edge in the above trees yields the (non-binary!) tree

From associativity to dendrology II

The Associahedron

Theorem (Tamari 1951, Stasheff 1963, Loday 2004)

There is a convex polytope Kn+¹ *of dimension n* − 1 *whose k-dimensional cells are in bijection with planar rooted trees with n* + 1 *leaves and n* − *k internal vertices.*

Moreover, there is an edge between two vertices if and only if the corresponding binary trees are related by a single flip.

*K*_{*n*+1} is called the Associahedron of dimension $n - 1$

The Associahedron *K*⁵

Image credit: Nilesj, CC0, via Wikimedia Commons

Exercise: Label the faces of K_5 with planar trees.

Planar trees as multi-operations

Interpret the rooted corolla with *r* leaves as an operation with *r* inputs:

By combining these, each planar rooted tree yields a multi-operation:

> *a b c d* $\mu_3(\mu_2(a,b), c, d)$

We also consider a unary operation

$$
a \longmapsto \mu_1(a) =: \mathbf{d}(a)
$$

corresponding to a planar rooted tree with one leaf:

> *a* $\frac{1}{2}$ d(*a*)

We decorate the tree with $a \bullet b$ remember that something happens as we flow through the tree

The *A*∞-equations (Stasheff 1963)

In general, the RHS is indexed by the boundary of the associahedron.

Back to the Borromean rings

Q: What differentiates these configurations from each other?

A: The circles in the Hopf link (bottom) are, well, linked.

Consider now the Borromean rings:

Q: What differentiates them from three unlinked circles?

Image credit: Jim.belk, Public domain, via Wikimedia Commons

The Hopf link, revisited

Let *X* be the complement of the Hopf link in the 3-sphere. The singular cohomology of *X* is

> $H^0(X;\mathbb{R}) \cong \mathbb{R}$, $H^1(X;\mathbb{R}) \cong \mathbb{R} \alpha \oplus \mathbb{R} \beta,$ $H^2(X;\mathbb{R}) \cong \mathbb{R}$.

Moreover, the cup product $\mu_2(\alpha, \beta) \neq 0$.

The complement of two unlinked circles has isomorphic cohomology, but

 $\mu_2(\alpha, \beta) = 0.$

Image credit: Niles Johnson, CC BY-SA 4.0, via Wikimedia Commons

A∞-structure on singular cohomology

The singular cohomology

$$
H^*(X; \mathbb{R}) = \bigoplus_{p=0}^{\infty} H^p(X; \mathbb{R})
$$

of a space *X* is endowed with multi-operations

 $d = \mu_1, \mu_2, \mu_3, \ldots$

that satisfy the *A*∞-equations, where

 $d = 0$ and $\mu_2 = \text{cup product.}$

What do the higher operations tell us about the space *X*?

Massey's beautiful theorem

Let *X* be the complement of the Borromean rings in the 3-sphere.

> $H^0(X;\mathbb{R}) \cong \mathbb{R}$, $H^1(X;\mathbb{R}) \cong \mathbb{R} \alpha \oplus \mathbb{R} \beta \oplus \mathbb{R} \gamma$, $H^2(X;\mathbb{R}) \cong \mathbb{R} \oplus \mathbb{R}$.

However,

 $\mu_2(\alpha, \beta) = \mu_2(\alpha, \gamma) = \mu_2(\beta, \gamma) = 0$

and the same is true for the complement of three unlinked circles. Theorem (Massey 1969)

Let X be the complement of the Borromean rings in the 3*-sphere. Then,*

 $\mu_3(\alpha, \beta, \gamma) \neq 0$.

In the case of the complement of three unlinked circles one has

 $\mu_3(\alpha, \beta, \gamma) = 0.$

First (?) proof that the Borromean rings are non-trivial.

A∞-structures in my research

The Donovan–Wemyss Conjecture

Compound Du Val singularities + cond. Finite-dim algebras Donovan–Wemyss

X – cDV singularity $\Lambda(X,p)$ – contraction algebra (Donovan–Wemyss 2013) $\int_{0}^{\text{der}} \Lambda(Y, q) \longrightarrow X \cong Y$

> (Wemyss 2018, Hua–Keller 2018, August 2020) Reduced the DW Conjecture to an algebraic problem

2022: Algebraic problem solved with Fernando Muro using *A*∞-structures!

The conjecture holds!

