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MoritaTheory



Classical Morita Theory (1958)
Let A and B be algebras. The following statements
are equivalent:

• There exists an equivalence

ModA
≃−→ Mod B.

• There exists P ∈ projA a generator such that
EndA(P) � B.

Gabriel (1962), Freyd (1966)

The second property characterises module
categories among cocomplete abelian
categories.

Kiiti Morita
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Rickard’s Derived Morita Theory (1989)

Let A and B be algebras. The following statements
are equivalent:

• There exists an exact equivalence

D(ModA) ≃−→ D(Mod B).

• There exists P ∈ Kb(projA) a generator with⊕
i∈Z

HomA(P, P[i]) = HomA(P, P) � B.

Jeremy Rickard in 2006

Q: How to characterise derived module categories?
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Keller’s Differential Graded Morita Theory (1994)

Let A and B be DG algebras. The following
statements are equivalent:

• There exists a quasi-equivalence

D(A)dg
≃−→ D(B)dg.

• There exists P ∈ Dc(A) a generator such that
REndA(P) ≃ B.

The second property characterises derived
categories of DG algebras among cocomplete
algebraic triangulated categories.
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Correspondences of Morita–Tachikawa Type



The Dominant Dimension

Tachikawa (1964) The dominant dimension of a
finite-dimensional algebra Γ is

domdim Γ = sup{ i ≥ 0 | Q0,Q1, . . . ,Qi−1 ∈ proj Γ }

where
0 → ΓΓ → Q0 → Q1 → · · ·

is a minimal injective coresolution.

Hiroyuki Tachikawa

Nakayama Conjecture (1958) domdim Γ = ∞ =⇒ Γ is self-injective
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The Morita–Tachikawa Correspondence (1970, 1971)

The map (A,MA) ↦→ EndA(M) induces a bijective correspondence between:

1. Pairs (A,MA) where A is a finite-dimensional algebra and A ⊕ DA ∈ add(M)
up to Morita equivalence (of pairs).

2. Finite-dimensional algebras Γ such that domdim Γ ≥ 2
up to Morita equivalence.

Paradigm: Relate further properties of M ∈ modA to properties of Γ and vice versa.
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The Auslander Correspondence (1971)
The map (A,MA) ↦→ EndA(M) induces a bijective
correspondence between:

1. Pairs (A,MA) where A is a finite-dimensional
algebra and add(M) = modA
up to Morita equivalence (of pairs).

2. Finite-dimensional algebras Γ such that

domdim Γ ≥ 2 ≥ gldim Γ

up to Morita equivalence. Maurice Auslander in 1987

Rmk: This result led Auslander and Reiten to develop the theory of almost split
sequences throughout the 1970s.
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Cluster Tilting Modules (d ≥ 1)

Iyama (2007) M ∈ modA is d-cluster tilting if

add(M) = { L ∈ modA | ∀0 < k < d ExtkA(L,M) = 0 }
add(M) = { N ∈ modA | ∀0 < k < d ExtkA(M,N) = 0 }

Osamu Iyama in 2014

Rmk: M ∈ modA is 1-cluster tilting ⇐⇒ add(M) = modA

Iyama–Yoshino (2008) Same definition works well in triangulated categories and

d-cluster tilting objects are (classical) generators
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The Auslander–Iyama Correspondence (2007)

The map (A,MA) ↦→ EndA(M) induces a bijective correspondence between:

1. Pairs (A,MA) where A is a finite dimensional algebra and M is a d-cluster tilting
module up to Morita equivalence (of pairs).

2. Finite-dimensional algebras Γ such that

domdim Γ ≥ d + 1 ≥ gldim Γ

up to Morita equivalence.

Rmk: This is one of the seminal results in Iyama’s higher Auslander–Reiten Theory.
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Derived Correspondences



A Motivating Question

T – cocomplete algebraic triangulated category

G ∈ Tc – compact generator

Keller (1994) There exists a DG algebra A and an exact equivalence

T
≃−→ D(A), G ↦−→ A;

⊕
i∈Z

T(G,G[i]) � H•(A).

Q: When is A determined up to quasi-isomorphism by

H0(A) = EndA(A) + minimal additional data?
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Twisted Periodic Algebras

From now on we work over a perfect field!

A finite-dimensional algebra Λ is twisted n-periodic w.r.t. 𝜎 ∈ Aut(Λ) if there exists
an exact sequence of Λ-bimodules

0 → 1Λ𝜎 → Pn−1 → · · · → P1 → P0 → Λ → 0

with P0, P1, . . . , Pn−1 ∈ projΛ. ( ⇐⇒ Ωn
Λe (Λ) ≃ 1Λ𝜎 )

Green–Snashall–Solberg (2013) Self-injective algebras of finite representation type
are twisted periodic.
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The Triangulated Auslander–Iyama Correspondence

We say that A ∈ Dc(A) is dZ-cluster tilting if it is d-cluster tilting and A � A[d].

The map A ↦→ (H0(A), 𝜑 : A � A[d]) induces a bijective correspondence between:

1. DG algebras A such that H0(A) is basic finite-dimensional and A ∈ Dc(A) is
dZ-cluster tilting, up to quasi-isomorphism.

2. Pairs (Λ, 𝜎) such that Λ is basic twisted (d + 2)-periodic w.r.t 𝜎,
up to algebra isomorphisms preserving [𝜎] ∈ Out(Λ).

Rmk: The case d = 1, when add(A) = Dc(A), is due to Muro.
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From dZ-cluster tilting to Hochschild cohomology

A ∈ Dc(A) dZ-cluster tilting & 𝜑 : A
≃−→ A[d]

Λ B H0(A), 𝜎 : a ↦−→ 𝜑−1a𝜑

H•(A) � Λ(𝜎, d) B
⊕
di∈dZ

𝜎iΛ1, a ∗ b B 𝜎j(a)b, |b| = dj,

Geiss–Keller–Oppermann (2013) + GSS (2003) + Hanihara (2020)

∃ 𝜂 : 0 → 1Λ𝜎 → Pd+1 → Pd → · · · → P1 → P0 → Λ → 0

[𝜂] ∈ Extd+2Λe (Λ, 1Λ𝜎) = HHd+2,−d(Λ,Λ(𝜎, d))

G. Jasso The Triangulated Auslander–Iyama Correspondence 13



The Key Theorem

Λ twisted (d + 2)-periodic w.r.t. 𝜎

Λ(𝜎, d) =
⊕
di∈dZ

𝜎iΛ1, a ∗ b = 𝜎j(a)b, |b| = dj

j∗ : HH•,d★(Λ(𝜎, d),Λ(𝜎, d)) −→ HH•,d★(Λ,Λ(𝜎, d)) � Ext•Λe (Λ, 𝜎★Λ1)

J–Muro (2022) There exists an essentially unique minimal A∞-algebra structure

(Λ(𝜎, d), md+2, m2d+2, m3d+2, . . .)

such that j∗{md+2} ∈ HHd+2,−d(Λ,Λ(𝜎, d)) is a unit in HH•,★(Λ,Λ(𝜎, d))
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TheDonovan–Wemyss Conjecture



Compound Du Val Singularities

Reid (1983) R � C⟦u, v, x, t⟧/(f) is a compound Du Val singularity (cDV) if

f(u, v, x, t) = g(u, v, x) + t · h(u, v, x, t)

and g = 0 is the equation of a Kleinian surface singularity, e.g.

g(u, v, x) = u2 + v2 + xn+1 (type An)

R isolated cDV singularity with crepant resolution

Dsg(R) = Db(mod R)/Kb(proj R) singularity category

Dsg(R) is 2-periodic: [2] � id

G. Jasso The Triangulated Auslander–Iyama Correspondence 15



The Donovan–Wemyss Conjecture

Wemyss (2018) The endomorphism algebras of 2Z-cluster tilting objects in Dsg(R)
are (precisely) the contraction algebras of R

Donovan–Wemyss (2013) Defined contraction algebras using non-commutative
deformation theory.

R1 and R2 isolated cDV singularities with crepant resolutions

Λ1 contraction algebra for R1 and Λ2 contraction algebra for R2

Donovan–Wemyss Conj (2013) Db(modΛ1) ≃ Db(modΛ2)
?

=⇒ R1 � R2.

August (2020) The contraction algebras of R form a single and complete derived
equivalence class of algebras
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Proof of the Donovan–Wemyss Conjecture

R isolated cDV singularity with crepant resolution

Dsg(R) canonical DG enhancement of Dsg(R)

Hua–Keller (2018) The DG category Dsg(R) determines R up to isomorphism:

HH0(Dsg(R)) �
C⟦u, v, x, t⟧(

f, 𝜕f
𝜕u ,

𝜕f
𝜕v ,

𝜕f
𝜕x ,

𝜕f
𝜕t

)
is the Tyurina algebra of R, which determines R since dim R = 3 is fixed (Mather–
Yau 1982).
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Proof of the Donovan–Wemyss Conjecture II

R1 and R2 isolated cDV singularities with crepant resolutions

Λ1 contraction algebra for R1 and Λ2 contraction algebra for R2

Suppose that Db(modΛ1) ≃ Db(modΛ2)

Wemyss (2018) + August (2020)

∃ T ∈ Dsg(R1) & ∃ S ∈ Dsg(R2) 2Z-cluster tilting such that

EndR1 (T) � Λ1 � EndR2 (S)

Triangulated Auslander–Iyama Correspondence =⇒ REndR1 (T) ≃ REndR2 (S)
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Happy birthday Bernhard!




	Morita Theory
	Correspondences of Morita–Tachikawa Type
	Derived Correspondences
	The Donovan–Wemyss Conjecture

