

The Triangulated Auslander–Iyama Correspondence

Gustavo Jasso (Lund University) Joint work with Fernando Muro (Universidad de Sevilla)

Workshop:

December 8-13, 2008

Confirmed Speakers:

 Aslak Buan (Troncheim, Norway): Cluster categories . Harm Derksen (Ann Arbor, USA); Quivers with potentials · Vladimir Fock (Moscow, Russia): Teichmüller theory Bernard Leclerc (Caen, France): Preprojective algebras and Lie theory · Michael Shapiro (Michigan State, USA): Poisson geometry · Dylan Thurston (Columbia, USA): Triangulated surfaces Lauren Williams (Harvard, USAI: Total positivity

Conference: December 15-20, 2008, Maxico City, Maxico

Confirmed Plenary Speakers:

· Arkady Berenstein (Eugene, USA) Sergey Fomin (Ann Arbor, USA) Osamu Ivama (Nagova, Japan) Bernhard Keller (Paris 7, France) Alexander Postnikov (MIT, USA) • Idun Beiten (Trondheim, Norward · Claus Michael Ringel (Bielefeld, Germany · Jan Schröer (Bonn, Germany) · David Spever (MIT, USA) Alek Vainshtein (Halfa, Israel) Jerzy Weyman (Northeastern, USA)

Pacific Institute ree ree Management

MSRI 🚟

Scientific Commit Andrei Zelevinsky Local Organizing Committe Raymundo Bautista Daniel Juan Michael Barol http://wow.matem.unam.mx/iconcart

CONACYT

Annals of Mathematics 177 (2013), 111-170 http://dx.doi.org/10.4007/annals.2013.177.1.3

The periodicity conjecture for pairs of Dynkin diagrams

By Bernhard Keller

Abstract

We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky's cluster algebras and their (additive) categorification via triangulated categories.

Bernhard in 2008

Myself at ICONCART

Morita Theory

Classical Morita Theory (1958)

Let *A* and *B* be algebras. The following statements are equivalent:

• There exists an equivalence

 $\operatorname{Mod} A \xrightarrow{\simeq} \operatorname{Mod} B.$

• There exists $P \in \text{proj} A$ a generator such that $\text{End}_A(P) \cong B$.

Gabriel (1962), Freyd (1966)

The second property characterises module categories among **cocomplete abelian categories**.

Kiiti Morita

Rickard's Derived Morita Theory (1989)

Let *A* and *B* be algebras. The following statements are equivalent:

• There exists an exact equivalence

 $D(\operatorname{\mathsf{Mod}} A) \xrightarrow{\simeq} D(\operatorname{\mathsf{Mod}} B).$

• There exists $P \in K^{b}(\operatorname{proj} A)$ a generator with

 $\bigoplus_{i\in\mathbb{Z}}\operatorname{Hom}_{A}(P,P[i])=\operatorname{Hom}_{A}(P,P)\cong B.$

Jeremy Rickard in 2006

Q: How to characterise derived module categories?

The Triangulated Auslander–Iyama Correspondence

Keller's Differential Graded Morita Theory (1994)

Let *A* and *B* be **DG** algebras. The following statements are equivalent:

• There exists a quasi-equivalence

$$D(A)_{\mathrm{dg}} \xrightarrow{\simeq} D(B)_{\mathrm{dg}}.$$

• There exists $P \in D^{c}(A)$ a generator such that $\mathbf{REnd}_{A}(P) \simeq B$.

The second property characterises derived categories of DG algebras among **cocomplete algebraic triangulated categories**.

Correspondences of Morita-Tachikawa Type

The Dominant Dimension

Tachikawa (1964) The dominant dimension of a finite-dimensional algebra Γ is

domdim
$$\Gamma = \sup\{ i \ge 0 \mid Q^0, Q^1, \dots, Q^{i-1} \in \operatorname{proj} \Gamma \}$$

where

$$0 \to \Gamma_{\Gamma} \to Q^0 \to Q^1 \to \cdots$$

is a minimal injective coresolution.

Hiroyuki Tachikawa

Nakayama Conjecture (1958) domdim
$$\Gamma = \infty \implies \Gamma$$
 is self-injective

The Triangulated Auslander–Iyama Correspondence

The map $(A, M_A) \mapsto End_A(M)$ induces a bijective correspondence between:

- 1. Pairs (A, M_A) where A is a finite-dimensional algebra and $A \oplus DA \in add(M)$ up to Morita equivalence (of pairs).
- 2. Finite-dimensional algebras Γ such that domdim $\Gamma \ge 2$ up to Morita equivalence.

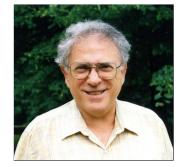
Paradigm: Relate further properties of $M \in \text{mod} A$ to properties of Γ and vice versa.

The Auslander Correspondence (1971)

The map $(A, M_A) \mapsto \text{End}_A(M)$ induces a bijective correspondence between:

- 1. Pairs (A, M_A) where A is a finite-dimensional algebra and add(M) = mod A up to Morita equivalence (of pairs).
- 2. Finite-dimensional algebras $\boldsymbol{\Gamma}$ such that

 $\operatorname{domdim} \Gamma \geq 2 \geq \operatorname{gldim} \Gamma$



up to Morita equivalence.

Maurice Auslander in 1987

Rmk: This result led Auslander and Reiten to develop the theory of almost split sequences throughout the 1970s.

Cluster Tilting Modules ($d \ge 1$)

Iyama (2007) $M \in \text{mod} A$ is d-cluster tilting if

 $add(M) = \{ L \in \operatorname{mod} A \mid \forall 0 < k < d \operatorname{Ext}_{A}^{k}(L, M) = 0 \}$ $add(M) = \{ N \in \operatorname{mod} A \mid \forall 0 < k < d \operatorname{Ext}_{A}^{k}(M, N) = 0 \}$

Osamu Iyama in 2014

Rmk: $M \in \text{mod} A$ is 1-cluster tilting $\iff \text{add}(M) = \text{mod} A$ **Iyama–Yoshino (2008)** Same definition works well in triangulated categories and *d*-cluster tilting objects are **(classical) generators**

G. Jasso

The Triangulated Auslander–Iyama Correspondence

The Auslander–Iyama Correspondence (2007)

The map $(A, M_A) \mapsto End_A(M)$ induces a bijective correspondence between:

- 1. Pairs (A, M_A) where A is a finite dimensional algebra and M is a d-cluster tilting module up to Morita equivalence (of pairs).
- 2. Finite-dimensional algebras Γ such that

domdim $\Gamma \ge d + 1 \ge \operatorname{gldim} \Gamma$

up to Morita equivalence.

Rmk: This is one of the seminal results in Iyama's higher Auslander–Reiten Theory.

Derived Correspondences

A Motivating Question

 \mathcal{T} – cocomplete **algebraic** triangulated category

 $G \in \mathfrak{T}^{\mathsf{c}}$ – compact generator

Keller (1994) There exists a DG algebra A and an exact equivalence

$$\mathfrak{T} \xrightarrow{\simeq} D(A), \qquad G \longmapsto A; \qquad \bigoplus_{i \in \mathbb{Z}} \mathfrak{T}(G, G[i]) \cong H^{\bullet}(A).$$

Q: When is A determined up to quasi-isomorphism by $H^0(A) = \text{End}_A(A) + \text{minimal additional data}$? Twisted Periodic Algebras

From now on we work over a perfect field!

A finite-dimensional algebra Λ is **twisted** *n*-**periodic** w.r.t. $\sigma \in Aut(\Lambda)$ if there exists an exact sequence of Λ -bimodules

$$0 \to {}_{1}\Lambda_{\sigma} \to P_{n-1} \to \cdots \to P_{1} \to P_{0} \to \Lambda \to 0$$

with $P_0, P_1, \dots, P_{n-1} \in \operatorname{proj} \Lambda$. $(\iff \Omega^n_{\Lambda^e}(\Lambda) \simeq {}_1\Lambda_{\sigma})$

Green–Snashall–Solberg (2013) Self-injective algebras of finite representation type are twisted periodic.

The Triangulated Auslander–Iyama Correspondence

We say that $A \in D^{c}(A)$ is $d\mathbb{Z}$ -cluster tilting if it is *d*-cluster tilting and $A \cong A[d]$.

The map $A \mapsto (H^0(A), \varphi : A \cong A[d])$ induces a bijective correspondence between:

- 1. DG algebras A such that $H^0(A)$ is basic finite-dimensional and $A \in D^c(A)$ is $d\mathbb{Z}$ -cluster tilting, up to quasi-isomorphism.
- 2. Pairs (Λ, σ) such that Λ is basic twisted (d+2)-periodic w.r.t σ , up to algebra isomorphisms preserving $[\sigma] \in Out(\Lambda)$.

Rmk: The case d = 1, when $add(A) = D^{c}(A)$, is due to Muro.

From $d\mathbb{Z}$ -cluster tilting to Hochschild cohomology

 $A \in D^{c}(A) \ d\mathbb{Z}$ -cluster tilting & $\varphi \colon A \xrightarrow{\simeq} A[d]$

$$\Lambda \coloneqq H^0(A), \qquad \sigma \colon a \longmapsto \varphi^{-1} a \varphi$$

$$H^{\bullet}(A) \cong \Lambda(\sigma, d) \coloneqq \bigoplus_{di \in d\mathbb{Z}} \sigma^{i} \Lambda_{1}, \qquad a \ast b \coloneqq \sigma^{j}(a)b, \quad |b| = dj,$$

Geiss-Keller-Oppermann (2013) + GSS (2003) + Hanihara (2020)

$$\exists \eta: \quad 0 \to {}_{1}\Lambda_{\sigma} \to P_{d+1} \to P_{d} \to \dots \to P_{1} \to P_{0} \to \Lambda \to 0$$

$$[\eta] \in \mathsf{Ext}_{\Lambda^{\mathrm{e}}}^{d+2}(\Lambda, {}_{1}\Lambda_{\sigma}) = \mathsf{H}\mathsf{H}^{d+2, -d}(\Lambda, \Lambda(\sigma, d))$$

The Key Theorem

Λ twisted (d + 2)-periodic w.r.t. σ

$$\Lambda(\sigma,d) = \bigoplus_{di \in d\mathbb{Z}} \sigma^i \Lambda_1, \qquad a * b = \sigma^j(a)b, \quad |b| = dj$$

$$j^* \colon \mathsf{HH}^{\bullet, d\star}(\Lambda(\sigma, d), \Lambda(\sigma, d)) \longrightarrow \mathsf{HH}^{\bullet, d\star}(\Lambda, \Lambda(\sigma, d)) \cong \mathsf{Ext}^{\bullet}_{\Lambda^{\mathrm{e}}}(\Lambda, {}_{\sigma^{\star}}\Lambda_{1})$$

J–Muro (2022) There exists an essentially unique minimal A_{∞} -algebra structure

$$(\Lambda(\sigma, d), m_{d+2}, m_{2d+2}, m_{3d+2}, \ldots)$$

such that $j^* \{ m_{d+2} \} \in HH^{d+2,-d}(\Lambda, \Lambda(\sigma, d))$ is a unit in $\underline{HH}^{\bullet,\star}(\Lambda, \Lambda(\sigma, d))$

The Donovan–Wemyss Conjecture

Reid (1983) $R \cong \mathbb{C}\llbracket u, v, x, t \rrbracket / (f)$ is a compound Du Val singularity (cDV) if

 $f(u, v, x, t) = g(u, v, x) + t \cdot h(u, v, x, t)$

and g = 0 is the equation of a Kleinian surface singularity, e.g.

$$g(u, v, x) = u^2 + v^2 + x^{n+1}$$
 (type A_n)

R isolated cDV singularity with crepant resolution

 $D_{sg}(R) = D^{b}(mod R)/K^{b}(proj R)$ singularity category

 $D_{sq}(R)$ is 2-periodic: [2] \cong id

The Donovan–Wemyss Conjecture

Wemyss (2018) The endomorphism algebras of $2\mathbb{Z}$ -cluster tilting objects in $D_{sg}(R)$ are (precisely) the **contraction algebras** of *R*

Donovan–Wemyss (2013) Defined contraction algebras using non-commutative deformation theory.

 R_1 and R_2 isolated cDV singularities with crepant resolutions

 Λ_1 contraction algebra for R_1 and Λ_2 contraction algebra for R_2

Donovan–Wemyss Conj (2013) $D^{b} (mod \Lambda_{1}) \simeq D^{b} (mod \Lambda_{2}) \xrightarrow{?} R_{1} \cong R_{2}.$

August (2020) The contraction algebras of *R* form a single and complete derived equivalence class of algebras

Proof of the Donovan–Wemyss Conjecture

R isolated cDV singularity with crepant resolution

 $\mathcal{D}_{sg}(R)$ canonical DG enhancement of $D_{sg}(R)$

Hua–Keller (2018) The DG category $\mathcal{D}_{sg}(R)$ determines R up to isomorphism:

$$\mathsf{HH}^{0}(\mathcal{D}_{\mathsf{sg}}(R)) \cong \frac{\mathbb{C}\llbracket u, v, x, t \rrbracket}{\left(f, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial t}\right)}$$

is the Tyurina algebra of R, which determines R since dim R = 3 is fixed (Mather-Yau 1982).

Proof of the Donovan–Wemyss Conjecture II

R₁ and R₂ isolated cDV singularities with crepant resolutions

 Λ_1 contraction algebra for R_1 and Λ_2 contraction algebra for R_2 Suppose that $D^b (\text{mod } \Lambda_1) \simeq D^b (\text{mod } \Lambda_2)$

Wemyss (2018) + August (2020)

 $\exists T \in D_{sq}(R_1)$ & $\exists S \in D_{sq}(R_2)$ 2 \mathbb{Z} -cluster tilting such that

 $\operatorname{End}_{R_1}(T) \cong \Lambda_1 \cong \operatorname{End}_{R_2}(S)$

Triangulated Auslander–Iyama Correspondence \implies REnd_{R1}(T) \simeq REnd_{R2}(S)

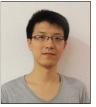
G. Jasso

Will Donovan

Michael Wemyss

Jenny August

Bernhard Keller



Zheng Hua

Fernando Muro

Happy birthday Bernhard!

