

Gustavo Jasso and Tashi Walde

'Two Weeks of Silting' Summer School Stuttgart, 30.07.2019–03.08.2019

Exercise 1 (Nerve and geometric realisation). Let \mathscr{C} be an ordinary category which admits all small colimits. Prove the following statements:

(1) Let $F: \Delta \to \mathscr{C}$ be an arbitrary functor. The functor

$$N_F: \mathscr{C} \longrightarrow \mathbf{Set}_{\Delta}, \qquad c \longmapsto \mathscr{C}(F(-),c)$$

admits a left adjoint.

(2) There is an adjunction

$$\tau : \mathbf{Set}_{\Delta} \longrightarrow \mathbf{Cat} : \mathbf{N}$$

such that $\tau(\Delta^n) = [n]$.

(3) There is an adjunction

$$|-|$$
: **Set** _{Δ} \longrightarrow **Top**: Sing

such that

$$|\Delta^n| = \{ \underline{t} \in [0,1]^{n+1} \mid t_0 + t_1 + \dots + t_n = 1 \}$$

endowed with the usual topology. Given a topological space X, discuss why is Sing(X) an ∞ -category.

*Exercise 2 (Lurie's differential graded nerve). For a commutative ring k, we denote the category (small) differential graded k-categories and differential graded functors between them by \mathbf{dgCat}_k (see [Kel06] for definitions but note that we grade chain complexes *homologically*). For $n \geq 0$, let $Q^{(n)}$ be the quiver with vertex set [n] and arrows

$$I: i \longrightarrow j$$

for each chain I = { $i < k_1 < \cdots < k_\ell < j$ } with $\ell \ge 0$. We endow Q⁽ⁿ⁾ with a grading by setting

$$\deg(I) = \#(I \setminus \{i, j\}) = \ell.$$

Let $\Bbbk Q^{(n)}$ be the free (non-negatively) graded \Bbbk -category generated by $Q^{(n)}$. Each monotone function $\sigma \colon [m] \to [n]$ induces a functor of graded \Bbbk -categories $f_\sigma \colon \Bbbk Q^{(m)} \to \Bbbk Q^{(n)}$ given by

$$f_{\sigma}(\mathbf{I}) = \begin{cases} \sigma(\mathbf{I}) & \text{if } \sigma|_{\mathbf{I}} \text{ is injective,} \\ \mathrm{id}_k & \text{if } \mathbf{I} = \{i < j\} \text{ and } \sigma(i) = \sigma(j) = k, \\ 0 & \text{otherwise.} \end{cases}$$

We promote $kQ^{(n)}$ to a differential graded k-category $k\Delta^n$ by defining the action of the differential

$$d: \mathbb{k}Q^{(n)}(i,j) \longrightarrow \mathbb{k}Q^{(n)}(i,j)$$

on a chain $I = \{i < k_1 < \dots < k_\ell < j\}$ by the formula

$$d(\mathbf{I}) = \sum_{1 \leq m \leq \ell} (-1)^m (\mathbf{I} \setminus \{k_m\} - \{k_m < \dots < k_\ell < j\}) \circ \{i < k_1 < \dots < k_m\}).$$

According to Exercise 1 there is an adjunction

$$\mathbb{k} : \mathbf{Set}_{\Delta} \Longrightarrow \mathbf{dgCat}_{\mathbb{k}} : \mathbf{N}(-)_{dg}$$

Date: 02.08.2019.

such that $\mathbb{k}\Delta^n$ is the differential graded \mathbb{k} -category defined above; moreover, for each small differential graded k-category \mathscr{A} , the simplicial set $N(\mathscr{A})_{dg}$ is an ∞ -category [Lur17, Prop 1.3.1.10]. The functor $N(-)_{dg}$ is called the **differential graded nerve**.

Let \mathcal{A} be a small differential graded \mathbb{k} -category.

- (1) Describe the *n*-simplices of the ∞ -category $N(\mathscr{A})_{dg}$ for n = 0, 1, 2, 3. Discuss why is $N(\mathscr{A})_{dg}$ an ∞-category.
- (2) Prove that

$$\operatorname{Ho}\left(\operatorname{N}(\mathscr{A})_{dg}\right) = \operatorname{H}_0(\mathscr{A}),$$

where $H_0(\mathcal{A})$ is the category with the same objects as \mathcal{A} and sets of morphisms

$$H_0(\mathscr{A})(x,y) := H_0(\mathscr{A}(x,y)). \qquad \Box$$

Exercise 3. Let

$$\mathscr{A} \xrightarrow{i_{L}} \mathscr{C} \xrightarrow{i_{L}} \mathscr{C} \xrightarrow{p_{L}} \mathscr{B}$$

be a recollement of stable ∞-categories. Prove that there is an equivalence of exact functors

$$(i_{\rm R} \circ p_{\rm L}) \simeq \Omega(i_{\rm L} \circ p_{\rm R}).$$

Hint: There is a biCartesian square of exact functors

$$\begin{array}{ccc} p_{\mathsf{L}} \circ p & \longrightarrow \mathrm{id}_{\mathscr{C}} \\ \downarrow & \Box & \downarrow \\ 0 & \longrightarrow i \circ i_{\mathsf{I}} \end{array}$$

 $\textit{where } p_L \circ p \to id_\mathscr{C} \textit{ and } id_\mathscr{C} \to i \circ i_L \textit{ are the counit and the unit of the adjunctions } p_L \dashv p \textit{ and } i_L \dashv i,$

Exercise 4. Let $F: \mathcal{B} \to \mathcal{A}$ be an exact functor between stable ∞ -categories. Sketch the construction of recollements of stable ∞-categories

$$\mathscr{A} \xrightarrow[i_R]{i_L} \mathscr{L}^*(F) \xrightarrow[p_R]{p_L} \mathscr{B} \quad \text{ and } \quad \mathscr{A} \xrightarrow[f]{j_L} \mathscr{L}_*(F) \xrightarrow[q_R]{q_L} \mathscr{B}.$$

Hint: Define recollement structures on Fun($s \to t, \mathcal{A}$) and use the defining pullback squares

to construct morphisms of recollements

$$\mathcal{A} \xrightarrow{i_L} \mathcal{L}^*(F) \xrightarrow{p_L} \mathcal{B}$$

$$\downarrow id_{\mathscr{A}} \qquad \downarrow i_L \qquad \downarrow p_L \qquad$$

Exercise 5. Let R and S be rings and M an $(S^{op} \otimes R)$ -bimodule. Let $\mathcal{U}_*(-\otimes_S M)$ be the ordinary category whose objects are the pairs

$$(X, \varphi) = (X_S, \varphi : X \otimes_S M_R \to Y_R)$$

where X is a right S-module and φ is a morphism between right R-modules. A morphism $(X, \varphi) \to (X', \varphi')$ in $\mathcal{U}_*(-\otimes_S M)$ consists of morphisms

$$f: X \to X'$$
 and $g: Y \to Y'$,

where f is a morphism between right S-modules and g is a morphism between right R-modules, such that the diagram

$$\begin{array}{c} X \otimes_S M \stackrel{\phi}{\longrightarrow} Y \\ f \otimes_S \mathrm{id}_M \downarrow & \downarrow g \\ X' \otimes_S M \stackrel{\phi'}{\longrightarrow} Y' \end{array}$$

commutes. Prove the following statements:

(1) There is a strict pullback diagram of categories

$$\mathcal{U}_*(-\otimes_{S} M) \longrightarrow \operatorname{Fun}(s \to t, \operatorname{Mod}(R))$$

$$\downarrow \qquad \qquad \operatorname{PB} \qquad \qquad \downarrow^{s}$$

$$\operatorname{Mod}(S) \xrightarrow{-\otimes_{S} M} \operatorname{Mod}(R)$$

Moreover, the category $\mathcal{U}_*(-\otimes_S M)$ is abelian.

(2) There is a recollement of abelian categories

$$\operatorname{Mod}(R) \xrightarrow{i_{L}} i \xrightarrow{\mathcal{U}_{*}} (- \otimes_{S} M) \xrightarrow{p} \xrightarrow{p} \operatorname{Mod}(S)$$

such that $-\otimes_S M = i_R \circ p_L$ (give explicit formulas for all the six functors).

(3) The category $\mathcal{U}_*(-\otimes_S M)$ is equivalent to Mod((SM)) where

$$\begin{pmatrix} S & M \\ 0 & R \end{pmatrix} := \{ \begin{pmatrix} s & m \\ 0 & r \end{pmatrix} | r \in R, s \in S, m \in M \}$$

viewed as a ring with respect to the usual matrix operations.

(4) Make the appropriate modifications to define an abelian category $\mathscr{U}^*(\operatorname{Hom}_R(M,-))$ and formulate the analogues of (1), (2) and (3) above. What do you notice?

References

[Kel06] B. Keller, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190. MR 2275593

[Lur17] J. Lurie, Higher algebra, May 2017, Available online at http://www.math.harvard.edu/~lurie/.