The Extended Affine Lie Algebra Associated with a Connected Non-negative Unit Form

Gustavo Jasso Ahuja

Universidad Nacional Autónoma de México

> ICRA XIV August 12, 2010

> > 1 / 17

Connected positive definite unit forms (corank 0).

э

Connected non-negative unit forms of corank 1.

Simply-laced simple Lie algebras of finite type.

Connected non-negative unit \leftrightarrow forms of corank 1.

- Simply-laced simple Lie algebras of finite type.
- Simply-laced Kac-Moody algebras of affine type.

Connected non-negative unit \leftrightarrow forms of corank 1.

Connected non-negative unit forms of corank ≥ 2 .

- Simply-laced simple Lie algebras of finite type.
 - Simply-laced Kac-Moody algebras of affine type.

Connected non-negative unit \leftrightarrow forms of corank 1.

Connected non-negative unit forms of corank ≥ 2 .

Simply-laced simple Lie algebras of finite type.

Simply-laced Kac-Moody algebras of affine type.

?

2 / 17

Connected positive definite unit forms (corank 0).

Connected nonnegative unit forms of corank 1.

Connected nonnegative unit forms of corank ≥ 2 . Simply-laced simple Lie algebras of finite type.

 \leftrightarrow

 \leftrightarrow

イロト イポト イヨト イヨト

Simply-laced Kac-Moody algebras of affine type.

?

3

3 / 17

We associate with q a matrix C given by

$$C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).$$

Where $\{c_1, \ldots, c_n\}$ denotes the standard basis of \mathbb{Z}^n .

Connected posi-Simply-laced tive definite unit simple Lie alforms (corank gebras of finite \leftrightarrow type. Connected non-Simply-laced negative unit Kac-Moody alforms of corank \leftrightarrow gebras of affine type. Connected nonnegative unit forms of corank ? ≥ 2 .

(日) (周) (三) (三)

3

We associate with q a matrix C given by

$$C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).$$

Where $\{c_1, \ldots, c_n\}$ denotes the standard basis of \mathbb{Z}^n . Also, let

$$R^0 = q^{-1}(0)$$
 $R^{\times} = q^{-1}(1).$

Connected posi- tive definite unit forms (corank 0).	\leftrightarrow	Simply-laced simple Lie al- gebras of finite type.
Connected non- negative unit forms of corank 1.	\leftrightarrow	Simply-laced Kac-Moody al- gebras of affine type.
Connected non- negative unit		
forms of corank $\geqslant 2$.		?

We associate with q a matrix C given by

$$C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).$$

Where $\{c_1, \ldots, c_n\}$ denotes the standard basis of \mathbb{Z}^n . Also, let

$$R^0 = q^{-1}(0)$$
 $R^{\times} = q^{-1}(1).$

We call $R = R^0 \cup R^{\times}$ the *root system* of q.

Connected posi- tive definite unit forms (corank 0).	\leftrightarrow	Simply-laced simple Lie al- gebras of finite type.
Connected non- negative unit forms of corank 1.	\leftrightarrow	Simply-laced Kac-Moody al- gebras of affine type.
Connected non- negative unit forms of corank ≥ 2 .		?

Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with 3n generators

$$e_{-i}, h_i, e_i \quad i \in \{1, \dots, n\}$$

Let $q:\mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative

unit form unit form.

We associate with q a matrix C given by

$$C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).$$

Where $\{c_1,\ldots,c_n\}$ denotes the standard basis of $\mathbb{Z}^n.$ Also, let

$$R^0 = q^{-1}(0)$$
 $R^{\times} = q^{-1}(1).$

3 🕨 🖌 3

4 / 17

We call $R = R^0 \cup R^{\times}$ the *root system* of q.

Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with 3n generators

$$e_{-i}, h_i, e_i \quad i \in \{1, \dots, n\}$$

homogeneous of degrees

$$-c_i, 0, c_i \quad i \in \{1, \ldots, n\}$$

Let $q:\mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative

unit form unit form.

We associate with q a matrix C given by

$$C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).$$

Where $\{c_1,\ldots,c_n\}$ denotes the standard basis of $\mathbb{Z}^n.$ Also, let

$$R^0 = q^{-1}(0)$$
 $R^{\times} = q^{-1}(1).$

B ▶ < B ▶

We call $R = R^0 \cup R^{\times}$ the *root system* of q.

Let $\operatorname{corank} q \in \mathbb{Z}_{\geq} 0$ and let G(q) be the quotient of FL by the ideal generated by the following generalized Serre relations:

Construction [Barot,

Kussin, Lenzing]

Let FL be the free Lie algebra with $3n\ {\rm generators}$

$$e_{-i}, h_i, e_i \quad i \in \{1, \ldots, n\}$$

homogeneous of degrees

 $-c_i, 0, c_i \quad i \in \{1, \ldots, n\}$

Let corank $q \in \mathbb{Z}_{\geq}0$ and let G(q) be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all
$$i, j \in \{1, \dots, n\}$$
 and $\varepsilon, \delta = \pm 1$ let

(S1)
$$[h_i, h_j] = 0.$$

Construction [Barot,

Kussin, Lenzing] Let FL be the free Lie algebra with 3n generators

$$e_{-i}, h_i, e_i \quad i \in \{1, \ldots, n\}$$

homogeneous of degrees

 $-c_i, 0, c_i \quad i \in \{1, \ldots, n\}$

Let corank $q \in \mathbb{Z}_{\geq}0$ and let G(q) be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all $i,j\in\{1,\ldots,n\}$ and $\varepsilon,\delta=\pm 1$ let

$$(S1) \qquad [h_i, h_j] = 0.$$

(S2)
$$[h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}.$$

Construction [Barot,

Kussin, Lenzing] Let FL be the free Lie algebra with 3n generators

$$e_{-i}, h_i, e_i \quad i \in \{1, \dots, n\}$$

homogeneous of degrees

 $-c_i, 0, c_i \quad i \in \{1, \dots, n\}$

5 / 17

Let corank $q \in \mathbb{Z}_{\geq}0$ and let G(q) be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all
$$i, j \in \{1, \dots, n\}$$
 and $\varepsilon, \delta = \pm 1$ let

$$(S1) \qquad [h_i,h_j] = 0.$$

(S2)
$$[h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}.$$

(S3)
$$[e_{\varepsilon i}, e_{-\varepsilon i}] = \varepsilon h_i.$$

Construction [Barot,

Kussin, Lenzing] Let FL be the free Lie algebra with 3n generators

$$e_{-i}, h_i, e_i \quad i \in \{1, \dots, n\}$$

homogeneous of degrees

 $-c_i, 0, c_i \quad i \in \{1, \dots, n\}$

Let corank $q \in \mathbb{Z}_{\geq}0$ and let G(q) be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all $i,j\in\{1,\ldots,n\}$ and $\varepsilon,\delta=\pm 1$ let

$$(S1) [h_i, h_j] = 0.$$

(S2)
$$[h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}.$$

(S3)
$$[e_{\varepsilon i}, e_{-\varepsilon i}] = \varepsilon h_i.$$

$$(\mathsf{S}\infty) \qquad [e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] = 0,$$

whenever
$$q(\sum_{k=1}^{t} \varepsilon_k c_k) > 1$$
, for $\varepsilon_k = \pm 1$
and $i_k \in \{1, \dots, n\}$.

Construction [Barot,

Kussin, Lenzing] Let FL be the free Lie algebra with 3n generators

$$e_{-i}, h_i, e_i \quad i \in \{1, \ldots, n\}$$

homogeneous of degrees

 $-c_i, 0, c_i \quad i \in \{1, \ldots, n\}$

Remark

Every monomial $[e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] \in G(q)$ has a well defined degree,

The Algebra $\tilde{G}(q)$

Let $\operatorname{corank} q \in \mathbb{Z}_{\geqslant} 0$ and let G(q) be the

quotient of $FL\xspace$ by the ideal generated by the following generalized Serre relations:

For all $i,j\in\{1,\ldots,n\}$ and $arepsilon,\delta=\pm 1$ let

$$[h_i, h_j] = 0.$$

(S

$$(S2) [h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}.$$

(S3)
$$[e_{\varepsilon i}, e_{-\varepsilon i}] = \varepsilon h_i.$$

$$(S\infty) \qquad [e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] = 0,$$

whenever $q(\sum_{k=1}^{t} \varepsilon_k c_k) > 1$, for $\varepsilon_k = \pm 1$ and $i_k \in \{1, \dots, n\}$.

6 / 17

Remark

Every monomial $[e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] \in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k.$$

The Algebra $\tilde{G}(q)$

Let $\operatorname{corank} q \in \mathbb{Z}_{\geqslant} 0$ and let G(q) be the

quotient of $FL\xspace$ by the ideal generated by the following generalized Serre relations:

For all $i,j\in\{1,\ldots,n\}$ and $arepsilon,\delta=\pm 1$ let

- (S1) $[h_i, h_j] = 0.$
- (S2) $[h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}.$

$$(S3) \qquad [e_{\varepsilon i}, e_{-\varepsilon i}] = \varepsilon h_i.$$

$$(\mathsf{S}\infty) \qquad [e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] = 0,$$

whenever $q(\sum_{k=1}^{t} \varepsilon_k c_k) > 1$, for $\varepsilon_k = \pm 1$ and $i_k \in \{1, \dots, n\}$.

Remark

Every monomial $[e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] \in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k.$$

Definition

 $\tilde{G}(q) := G(q) \oplus (\operatorname{rad} q)^*.$

The Algebra $\tilde{G}(q)$

Let $\operatorname{corank} q \in \mathbb{Z}_{\geqslant} 0$ and let G(q) be the

quotient of $FL\xspace$ by the ideal generated by the following generalized Serre relations:

For all $i,j\in\{1,\ldots,n\}$ and $arepsilon,\delta=\pm 1$ let

- (S1) $[h_i, h_j] = 0.$
- (S2) $[h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}.$

(S3)
$$[e_{\varepsilon i}, e_{-\varepsilon i}] = \varepsilon h_i.$$

$$(\mathsf{S}\infty) \qquad [e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] = 0,$$

whenever $q(\sum_{k=1}^{t} \varepsilon_k c_k) > 1$, for $\varepsilon_k = \pm 1$ and $i_k \in \{1, \dots, n\}$.

(EA2) It has a finite dimensional abelian subalgebra H which equals it's own centralizer in $\tilde{G}(q)$ and such that $\operatorname{ad} h$ is diagonalizable for all $h \in H$.

The Algebra $\tilde{G}(q)$

Remark

Every monomial $[e_{\varepsilon_1\,i_1},\ldots,e_{\varepsilon_t\,i_t}]\in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k$$

Definition

(EA2) It has a finite dimensional abelian subalgebra H which equals it's own centralizer in $\tilde{G}(q)$ and such that $\operatorname{ad} h$ is diagonalizable for all $h \in H$.

(EA3) ad x_{α} acts locally nilpotently for $\alpha \in R^{\times}$.

The Algebra $\tilde{G}(q)$

Remark

Every monomial $[e_{\varepsilon_1\,i_1},\ldots,e_{\varepsilon_t\,i_t}]\in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k$$

Definition

(EA2) It has a finite dimensional abelian subalgebra H which equals it's own centralizer in $\tilde{G}(q)$ and such that $\operatorname{ad} h$ is diagonalizable for all $h \in H$.

(EA3) ad x_{α} acts locally nilpotently for $\alpha \in R^{\times}$.

(EA4) R is discrete.

The Algebra $\tilde{G}(q)$

Remark

Every monomial $[e_{\varepsilon_1\,i_1},\ldots,e_{\varepsilon_t\,i_t}]\in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k$$

Definition

(EA2) It has a finite dimensional abelian subalgebra H which equals it's own centralizer in $\tilde{G}(q)$ and such that $\operatorname{ad} h$ is diagonalizable for all $h \in H$.

(EA3) ad x_{α} acts locally nilpotently for $\alpha \in R^{\times}$.

(EA4) R is discrete.

(EA5) R is irreducible.

The Algebra $\tilde{G}(q)$

Remark

Every monomial $[e_{\varepsilon_1\,i_1},\ldots,e_{\varepsilon_t\,i_t}]\in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k$$

Definition

Extended Affine Lie Algebras

[Høegh-Krohn & Torresani. Allison, Azam, Berman, Gao, Pianzola] An extended affine Lie algebra (EALA) is a complex Lie algebra which satisfies axioms (EA2)-(EA5) together with the following axiom:

Properties of $\tilde{G}(q)$

(EA2) It has a finite dimensional abelian

subalgebra H which equals it's own centralizer in $\tilde{G}(q)$ and such that ${\rm ad}\ h$ is diagonalizable for all $h\ \in\ H.$

(EA3) ad x_{α} acts locally nilpotently for $\alpha \in \mathbb{R}^{\times}$.

(EA4) R is discrete.

(EA5) R is irreducible.

Extended Affine Lie Algebras

[Høegh-Krohn & Torresani. Allison, Azam, Berman, Gao, Pianzola] An extended affine Lie algebra (EALA) is a complex Lie algebra which satisfies axioms (EA2)-(EA5) together with the following axiom:

(EA1) The algebra has a non-degenerate invariant symmetric bilinear form.

Properties of $\tilde{G}(q)$

(EA2) It has a finite dimensional abelian

subalgebra H which equals it's own centralizer in $\tilde{G}(q)$ and such that ${\rm ad}\;h$ is diagonalizable for all $h\,\in\,H.$

(EA3) ad x_{α} acts locally nilpotently for $\alpha \in \mathbb{R}^{\times}$.

(EA4) R is discrete.

(EA5) R is irreducible.

Remark

If corank $q \ge 2$, then the algebra $\tilde{G}(q)$ is *not* an EALA.

Extended Affine Lie

Algebras [Høegh-Krohn & Torresani. Allison, Azam,

Berman, Gao, Pianzola]

< m

-

An extended affine Lie algebra (EALA) is a complex Lie algebra which satisfies axioms (EA2)-(EA5) together with the following axiom:

(EA1) The algebra has a non-degenerate invariant symmetric bilinear form.

Remark

If corank $q \ge 2$, then the algebra $\tilde{G}(q)$ is *not* an EALA.

One cannot define a *non-degenerate* symmetric invariant bilinear form on $\tilde{G}(q)$.

Extended Affine Lie

Algebras [Høegh-Krohn & Torresani. Allison, Azam,

Berman, Gao, Pianzola]

An extended affine Lie algebra (EALA) is a complex Lie algebra which satisfies axioms (EA2)-(EA5) together with the following axiom:

(EA1) The algebra has a non-degenerate invariant symmetric bilinear form.

How do we fix it? The algebra $\tilde{G}(q)$ is an H^* -graded H-module, hence it contains a unique maximal ideal I with respect to $I \cap H = \{0\}.$

Remark

If corank $q \ge 2$, then the algebra $\tilde{G}(q)$ is *not* an EALA.

3 K K 3 K

э

One cannot define a *non-degenerate* symmetric invariant bilinear form on $\tilde{G}(q)$.

How do we fix it? The algebra $\tilde{G}(q)$ is an H^* -graded H-module, hence it contains a unique maximal ideal I with respect to $I \cap H = \{0\}.$

The algebra $E(q) := \tilde{G}(q)/I$ is an EALA.

Remark

If corank $q \ge 2$, then the algebra $\tilde{G}(q)$ is *not* an EALA.

One cannot define a *non-degenerate* symmetric invariant bilinear form on $\tilde{G}(q)$.

Main result

Theorem

Let $q : \mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative unit form with associated root system R. Then the Lie algebra E(q) is a centerless tame EALA with root system R.

How do we fix it?

The algebra $\tilde{G}(q)$ is an H^* -graded H-module, hence it contains a unique maximal ideal I with respect to $I \cap H = \{0\}$.

The algebra $E(q) := \tilde{G}(q)/I$ is an EALA.

Main result

Theorem

Let $q : \mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative unit form with associated root system R. Then the Lie algebra E(q) is a centerless tame EALA with root system R. Furthermore, if q' is a connected non-negative unit form which is equivalent to q then E(q) and E(q') are isomorphic as EALAs.

How do we fix it?

The algebra $\tilde{G}(q)$ is an H^* -graded H-module, hence it contains a unique maximal ideal I with respect to $I \cap H = \{0\}$.

The algebra $E(q) := \tilde{G}(q)/I$ is an EALA.

Remark

In order to show that E(q) is an EALA it is useful to introduce an alternative construction of this algebra.

Main result

Theorem

Let $q: \mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative unit form with associated root system R. Then the Lie algebra E(q) is a centerless tame EALA with root system R. Furthermore, if q' is a connected non-negative unit form which is equivalent to qthen E(q) and E(q') are isomorphic as EALAs.

Construct a Lie algebra $\hat{E}(q)$

Remark

In order to show that E(q) is an EALA it is useful to introduce an alternative construction of this algebra.

< 17 ▶

→ < Ξ

such that there is a projection

$$\hat{E}(q) \stackrel{p}{\longleftarrow} \tilde{G}(q)$$

Remark

In order to show that E(q) is an EALA it is useful to introduce an alternative construction of this algebra.

∃ ► < ∃</p>

< 67 ▶

which factors

Remark

In order to show that E(q) is an EALA it is useful to introduce an alternative construction of this algebra.

exactly through E(q).

Remark

In order to show that E(q) is an EALA it is useful to introduce an alternative construction of this algebra.

It suffices to show that $\hat{E}(q)$ is an EALA.

Remark

In order to show that E(q) is an EALA it is useful to introduce an alternative construction of this algebra.

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \left\{ \begin{array}{c} \\ \end{array} \right.$$

The Algebra
$$\hat{E}(q)$$

It suffices to show that $\hat{E}(q)$ is an EALA.

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times}, \\ \\ \end{cases}$$

The Algebra
$$\hat{E}(q)$$

It suffices to show that $\hat{E}(q)$ is an EALA.

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times}, \\ \mathbb{C}^{n}/\operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \end{cases}$$

The Algebra
$$\hat{E}(q)$$

It suffices to show that $\hat{E}(q)$ is an EALA.

The Algebra $\hat{E}(q)$

It suffices to show that $\hat{E}(q)$ is an EALA.

э

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times}, \\ \mathbb{C}^{n}/\operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \\ \mathbb{C}^{n} \oplus (\operatorname{rad} q)^{*} & \text{if } \alpha = 0. \end{cases} \xrightarrow{\hat{E}(q)} \overset{p}{\longleftarrow} \overset{\tilde{G}(q)}{\longleftarrow}$$

The Algebra $\hat{E}(q)$

It suffices to show that $\hat{E}(q)$ is an EALA.

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times}, \\ \mathbb{C}^{n}/\operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \\ \mathbb{C}^{n} \oplus (\operatorname{rad} q)^{*} & \text{if } \alpha = 0. \end{cases}$$

Let $\alpha, \beta \in \mathbb{R}^{\times}, \ \sigma, \tau \in \mathbb{R}^{0}, \ v, w \in \mathbb{C}^{n}$:

The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times} \,, \\ \mathbb{C}^{n}/\operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \\ \mathbb{C}^{n} \oplus (\operatorname{rad} q)^{*} & \text{if } \alpha = 0. \end{cases}$$

Let $\alpha, \beta \in \mathbb{R}^{\times}, \ \sigma, \tau \in \mathbb{R}^{0}, \ v, w \in \mathbb{C}^{n}$:

(B1) $[\pi_{\sigma}(v), \pi_{\tau}(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma).$

The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times} \,, \\ \mathbb{C}^{n} / \operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \\ \mathbb{C}^{n} \oplus (\operatorname{rad} q)^{*} & \text{if } \alpha = 0. \end{cases}$$

Let $\alpha, \beta \in R^{\times}, \ \sigma, \tau \in R^0, \ v, w \in \mathbb{C}^n$:

(B1)
$$[\pi_{\sigma}(v), \pi_{\tau}(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma).$$

(B2)
$$[\pi_{\sigma}(v), e_{\beta}] = q(v, \beta)e_{\beta+\sigma}.$$

The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times} \,, \\ \mathbb{C}^{n} / \operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \\ \mathbb{C}^{n} \oplus (\operatorname{rad} q)^{*} & \text{if } \alpha = 0. \end{cases}$$

Let $\alpha, \beta \in R^{\times}, \ \sigma, \tau \in R^0, \ v, w \in \mathbb{C}^n$:

(B1)
$$[\pi_{\sigma}(v), \pi_{\tau}(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma).$$

(B2)
$$[\pi_{\sigma}(v), e_{\beta}] = q(v, \beta)e_{\beta+\sigma}.$$

The Algebra
$$\hat{E}(q)$$

For $\alpha \, \in \, R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times} \,, \\ \mathbb{C}^{n} / \operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \\ \mathbb{C}^{n} \oplus (\operatorname{rad} q)^{*} & \text{if } \alpha = 0. \end{cases}$$

(B3)
$$[e_{\alpha}, e_{\beta}] = \begin{cases} \epsilon(\alpha, \beta)e_{\alpha+\beta} & \text{if } \alpha + \beta \in R^{\times}, \end{cases}$$

(B3)

Let $\alpha, \beta \in R^{\times}, \ \sigma, \tau \in R^0, \ v, w \in \mathbb{C}^n$:

(B1)
$$[\pi_{\sigma}(v), \pi_{\tau}(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma).$$

(B2)
$$[\pi_{\sigma}(v), e_{\beta}] = q(v, \beta)e_{\beta+\sigma}.$$

The Algebra
$$\hat{E}(q)$$

For $\alpha \, \in \, R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times} \,, \\ \mathbb{C}^{n} / \operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \\ \mathbb{C}^{n} \oplus (\operatorname{rad} q)^{*} & \text{if } \alpha = 0. \end{cases}$$

$$[e_{\alpha}, e_{\beta}] = \begin{cases} \epsilon(\alpha, \beta) e_{\alpha+\beta} & \text{if } \alpha + \beta \in R^{\times}, \\ \epsilon(\alpha, \beta) \pi_{\alpha+\beta}(\alpha) & \text{if } \alpha + \beta \in R^{0}, \end{cases}$$

(B3)

Let $\alpha, \beta \in R^{\times}, \ \sigma, \tau \in R^0, \ v, w \in \mathbb{C}^n$:

(B1)
$$[\pi_{\sigma}(v), \pi_{\tau}(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma).$$

(B2)
$$[\pi_{\sigma}(v), e_{\beta}] = q(v, \beta)e_{\beta+\sigma}.$$

The Algebra
$$\hat{E}(q)$$

For $\alpha \, \in \, R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^{\times} \,, \\ \mathbb{C}^{n} / \operatorname{rad} q & \text{if } \alpha \in R^{0} \setminus \{0\}, \\ \mathbb{C}^{n} \oplus (\operatorname{rad} q)^{*} & \text{if } \alpha = 0. \end{cases}$$

$$[e_{\alpha}, e_{\beta}] = \begin{cases} \epsilon(\alpha, \beta)e_{\alpha+\beta} & \text{if } \alpha + \beta \in R^{\times}, \\ \epsilon(\alpha, \beta)\pi_{\alpha+\beta}(\alpha) & \text{if } \alpha + \beta \in R^{0}, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\beta \in R^{\times}, \ \tau \in R^{0}, \ w \in \mathbb{C}^{n}$ and $\xi, \zeta \in (\operatorname{rad} q)^{*}$:

(B4)
$$[\xi, e_{\beta}] = -[e_{\beta}, \xi] = \xi \rho(\beta) e_{\beta}.$$

The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in \mathbb{R}^{\times}, \ \sigma, \tau \in \mathbb{R}^{0}, \ v, w \in \mathbb{C}^{n}$:

(B1)
$$[\pi_{\sigma}(v), \pi_{\tau}(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma).$$

(B2)
$$[\pi_{\sigma}(v), e_{\beta}] = q(v, \beta)e_{\beta+\sigma}.$$

Let $\beta \in R^{\times}, \ \tau \in R^{0}, \ w \in \mathbb{C}^{n}$ and $\xi, \zeta \in (\operatorname{rad} q)^{*}$:

(B4)
$$[\xi, e_{\beta}] = -[e_{\beta}, \xi] = \xi \rho(\beta) e_{\beta}.$$

(B5)
$$[\xi, \pi_{\tau}(w)] = \xi \rho(\beta) \pi_{\tau}(w).$$

The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in \mathbb{R}^{\times}, \ \sigma, \tau \in \mathbb{R}^{0}, \ v, w \in \mathbb{C}^{n}$:

(B3)

$$[e_{\alpha},e_{\beta}] = \begin{cases} \epsilon(\alpha,\beta)e_{\alpha+\beta} & \text{if } \alpha+\beta \in R^{\times}, \\ \epsilon(\alpha,\beta)\pi_{\alpha+\beta}(\alpha) & \text{if } \alpha+\beta \in R^{0}, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\beta \in R^{\times}, \ \tau \in R^{0}, \ w \in \mathbb{C}^{n}$ and $\xi, \zeta \in (\operatorname{rad} q)^{*}$:

(B4)
$$[\xi, e_{\beta}] = -[e_{\beta}, \xi] = \xi \rho(\beta) e_{\beta}.$$

(B5)
$$[\xi, \pi_{\tau}(w)] = \xi \rho(\beta) \pi_{\tau}(w).$$

(B6)
$$[\xi, \zeta] = 0.$$

The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in \mathbb{R}^{\times}, \ \sigma, \tau \in \mathbb{R}^{0}, \ v, w \in \mathbb{C}^{n}$:

(B3) $[e_{\alpha}, e_{\beta}] = \begin{cases} \epsilon(\alpha, \beta)e_{\alpha+\beta}\\ \epsilon(\alpha, \beta)\pi_{\alpha+\beta}\\ 0 \end{cases}$

$$\begin{array}{l} \beta & \text{if } \alpha + \beta \in R^{\times}, \\ \beta(\alpha) & \text{if } \alpha + \beta \in R^{0}, \\ & \text{otherwise.} \end{array}$$

Thanks for your attention!

The Algebra $\hat{E}(q)$

Let $\beta \in R^{\times}, \ \tau \in R^0, \ w \in \mathbb{C}^n$ and

 $\xi, \zeta \in (\operatorname{rad} q)^*$:

(B4)
$$[\xi, e_{\beta}] = -[e_{\beta}, \xi] = \xi \rho(\beta) e_{\beta}.$$

э

-

(B5)
$$[\xi, \pi_{\tau}(w)] = \xi \rho(\beta) \pi_{\tau}(w).$$

(B6)
$$[\xi, \zeta] = 0.$$