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Extended Affine Lie Algebras

[Høegh-Krohn & Torresani. Allison, Azam,
Berman, Gao, Pianzola]
An extended affine Lie algebra (EALA) is a
complex Lie algebra which satisfies axioms
(EA2)-(EA5) together with the following
axiom:
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Main result

Theorem
Let q : Zn → Z be a connected non-negative
unit form with associated root system R.
Then the Lie algebra E(q) is a centerless
tame EALA with root system R.
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Remark
In order to show that E(q) is an EALA it is
useful to introduce an alternative
construction of this algebra.
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The Algebra Ê(q)

Construct a Lie algebra Ê(q)
Remark
In order to show that E(q) is an EALA it is useful
to introduce an alternative construction of this
algebra.
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The Algebra Ê(q)

such that there is a projection

Ê(q) G̃(q)
poooo
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algebra.
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α∈R Ê(q)α as a vector space.

Gustavo Jasso Ahuja (UNAM) The EALA Associated with a Unit Form ICRA XIV. August 12, 2010 15 / 17



The Algebra Ê(q)
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Thanks for your attention!

The Algebra Ê(q)

Let β ∈ R×, τ ∈ R0, w ∈ Cn and

ξ, ζ ∈ (rad q)∗:

[ξ, eβ ] = −[eβ , ξ] = ξρ(β)eβ .(B4)

[ξ, πτ (w)] = ξρ(β)πτ (w).(B5)

[ξ, ζ] = 0.(B6)
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