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Brackets, t rees
and the Borromean r ings

Gustavo Jasso 1

We describe some of the beautiful mathematical struc-
tures that arise from the study of the associativity
equation. Our journey will bring us from combi-
natorics to abstract algebra, with brief excursions
through geometry and topology along the way.

1 The combinator ics of bracket ings

In this snapshot, we will have a glimpse at the wonderful complexity that
emerges from the familiar associativity equation:

((ab)c) = (a(bc)).

Let us warm up with the following counting problem considered by Catalan [3]
in the 1800s: 2

Consider a string of n + 1 letters, say a0a1a2 · · · an. How many
distinct ways are there to insert n pairs of correctly matched paren-
theses so that these define n binary products on this string?

1 Gustavo Jasso’s research was partially supported by the Swedish Research Council (Veten-
skapsrådet) Research Project Grant 2022-03748 ‘Higher structures in higher-dimensional
homological algebra.’ The author wishes to thank Bernhard Keller for comments on an earlier
version of the snapshot.
2 This problem is equivalent to that of counting the number of triangulations of a regular
convex polygon proposed by Euler in the 1750s.

1



For a string with one letter there is a single (empty) bracketing a0, and there
is also a single bracketing (a0a1) for a string with two letters. For a string
with three letters there are exactly two bracketings, ((a0a1)a2) and (a0(a1a2)).
If we now consider the case of a string with four letters we see that there
are five distinct bracketings: (((a0a1)a2)a3), ((a0(a1a2))a3), ((a0a1)(a2a3)),
(a0((a1a2)a3)) and (a0(a1(a2a3))).

Let us now tackle the general case. We observe that the first inner pair of
parentheses in a bracketing of the string a0a1a2 · · · an divides it into a left block
a0a1 · · · ak and a right block ak+1 · · · an. For example, according to the number
k + 1 of letters in the left block (underlined for clarity), the possible bracketings
of a string with four letters can be arranged as follows:

(a0((a1a2)a3)) (a0(a1(a2a3))) k = 0
((a0a1)(a2a3)) k = 1
(((a0a1)a2)a3) ((a0(a1a2))a3) k = 2.

Any bracketing of a string with k + 1 letters can appear within the left block
a0a1 · · · ak and, similarly, any bracketing of a string with n − k letters can
appear within the right block ak+1 · · · an. Thus, if we let Cn be the number of
distinct bracketings on a string of n + 1 letters, we obtain Segner’s recursive
formula

C0 = 1, Cn+1 =
n∑

k=0
CkCn−k, n ≥ 0.

For example, since

C0 = 1, C1 = 1, C2 = 2 and C3 = 5,

we obtain

C4 = C0C3 + C1C2 + C2C1 + C3C0

= 1 · 5 + 1 · 2 + 2 · 1 + 5 · 1
= 14.

From Segner’s recursive formula one can derive the closed-form expression

Cn = 1
n + 1

(
2n

n

)
, n ≥ 0,

although the derivation is not completely straightforward. The resulting num-
bers 3

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .

3 See the corresponding entry (A000108) in the Online Encyclopedia of Integer Sequences.
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are collectively known as the Catalan numbers and they appear remarkably often
throughout mathematics. Stanley’s book [13] lists 214 families of mathematical
objects that are counted by the Catalan numbers, and new families are discovered
on a regular basis. 4 Isn’t it remarkable that such a fundamental sequence of
numbers arises from simple considerations about bracketings?

2 The Tamar i lat t ices

One of the insights of 20th-century mathematics is the importance of recognising
and keeping track of the structures that are present among the objects that one
investigates. In his 1951 doctoral dissertation [15], Tamari observed that the set
(=collection) of bracketings of a string with n + 1 letters has the structure of a
partially ordered set. A partial order on a set X consists of a relation x ⪯ y
that satisfies the following axioms:

Reflexiv i ty For each element x ∈ X, we have x ⪯ x.

Antisymmetry If x ⪯ y and y ⪯ x, then x = y.

Transi t iv i ty If x ⪯ y and y ⪯ z, then x ⪯ z.

Thus, a partial order tells us when an element of the set is ‘smaller’ than
another one with the caveat that two arbitrary elements are not necessarily
comparable. 5 For example, we declare that the bracketing ((a0a1)a2) is smaller
than the bracketing (a0(a1a2)) and indicate this relation with an arrow:

((a0a1)a2) (a0(a1a2)).

More generally, for a fixed string of letters, we say that one bracketing is smaller
than another one if the latter can be obtained from the former by a sequence of
rightwards applications of the associativity law. The resulting structures are
called the Tamari lattices. 6 Figure 1 depicts the Tamari lattice for a string
with four letters, with an arrow pointing from a lower element to a larger one
obtained by a single rightwards application of the associativity law. The Tamari
lattice for a string with five letters has a three-dimensional character and is
depicted in Figure 2 (the outermost pairs of matching parentheses have been
omitted to increase readability).

4 See for example Rognerud’s snapshot [12], were the previous argument is applied to count
a family of objects appearing in the theory of quiver representations.
5 This is quite different from the usual order ≤ on the natural numbers, where given two
natural numbers a and b we have that a ≤ b or b ≤ a.
6 A lattice is a special kind of partially ordered set.
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((a0a1)(a2a3))

(((a0a1)a2)a3)

((a0(a1a2))a3)

(a0((a1a2)a3))

(a0(a1(a2a3)))

Figure 1: The Tamari lattice for a string with four letters.

We invite the interested reader to peruse the volume [11], published to
commemorate the centennial anniversary of Tamari’s birth, which contains
rather accessible surveys and interesting historical remarks on a wide range
of mathematics related to the Tamari lattices (some of them discussed in this
snapshot). For us, the illustrations of the Tamari lattices in Figures 1 and 2
suggest a relationship between bracketings and polytopes—higher-dimensional
analogues of polygons and polyhedra—that we outline in the next section.

((a(bc))d)e (a((bc)d))e

a((bc)(de))

((ab)(cd))e

((ab)c)(de) a((b(cd))e)

(a(bc))(de) a(((bc)d)e)

(((ab)c)d)e (a(b(cd)))e

·

·

· ·

· ·

a((bc)(de))

((ab)(cd))e

((ab)c)(de) a((b(cd))e)

(a(bc))(de) a(((bc)d)e)

(((ab)c)d)e (a(b(cd)))e

a(b(c(de)))

(ab)((cd)e)

(ab)(c(de)) a(b((cd)e))

Figure 2: The Tamari lattice for a string with five letters.
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3 From associat iv i ty to (mathematical) dendrology

Before continuing our discussion, it is convenient to introduce a way to visualise
different bracketings. Namely, each bracketing of a string with n + 1 letters
corresponds to what mathematicians call a ‘planar binary rooted tree with n + 1
leaves.’ Rather than giving a precise definition of this mouthful let us look at
some examples. The bracketing (a0a1) corresponds to the following tree:

a0 a1

(a0a1) (1)

This tree has two leaves at the top and one root pointing to the bottom—it
is called ‘planar’ because it has a fixed embedding in the plane. The two
bracketings ((a0a1)a2) and (a0(a1a2)) correspond to the trees

a0 a1 a2

((a0a1)a2)

a0 a1 a2

(a0(a1a2)) (2)

which now have three leaves and one root. As before, we have indicated the
rightwards application of the associativity law with an arrow. All of these are
binary trees since there are exactly two branches emanating upwards from every
node. 7 Thus, instead of bracketings, we may consider the Tamari lattices as
partial orders on planar binary rooted trees with a fixed number of leaves.

The interpretation of the Tamari lattices in terms of trees reveals further
structure that is not immediately apparent from looking at bracketings. Consider
the two planar binary rooted trees with three leaves, and notice that they both
have a unique internal edge. If we contract this edge to a point we obtain a new
planar rooted tree that is no longer binary since three branches/leaves emanate
from the unique node. We record the outcome of this procedure pictorially as
follows:

7 Planar binary trees are perhaps more recognisable as genealogical trees, although they are
typically drawn upside down in that context.
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Figure 3: The decorated Tamari lattice for trees with four leaves.

The Tamari lattice for the planar binary rooted trees with four leaves is depicted
in Figure 3. Notice that each of the binary trees that is placed on the vertices
of the pentagon now has two internal edges that we can contract separately into
a point. Something conspicuous happens: The new non-binary trees that label
the edges of the pentagon each have a single internal edge. If, in any of these
trees, we contract this edge into a point we obtain the last planar rooted tree
with four leaves. We have included this tree in the Tamari lattice as a further
decoration, this time as a label of the interior of the pentagon.

In general, every planar rooted tree can be obtained from the binary ones by
contracting one internal edge at a time. Remarkably, the planar rooted trees
with n + 1 leaves label the cells of an (n − 1)-dimensional polytope that is called
an associahedron because of its relation to bracketings and the associativity
equation. 8 The close relationship between associativity and planar rooted trees
can be used, among other things, to establish combinatorial formulas for the
inverse with respect to composition of formal power series [9]. As a curious
example, the formal power series

h(t) =
∑
n≥0

(−1)n+1Cnt3n+1,

8 The planar rooted trees with n + 1 leaves and k internal edges label the (n − 1 − k)-
dimensional cells of the corresponding associahedron. It is a nice exercise to label the
three-dimensional associahedron in Figure 2 with the planar rooted trees with five leaves.

6



whose coefficients are the Catalan numbers up to a sign, is its own inverse:
h(h(t)) = t.

Ceballos and Ziegler [4] remind us that associahedra have been described by
Haiman [6] as ‘mythical polytope[s]’ and, as we shall see below, there is more
to the relationship between associahedra and the associativity equation than
meets the eye . . .

4 Stasheff ’s A∞-a lgebras

Although associahedra were already present in Tamari’s thesis, they were
rediscovered in the 1960s by Stasheff—also in his doctoral dissertation [14].
Stasheff’s motivation came neither from combinatorics nor from geometry, but
from the field of algebraic topology. In a nutshell, algebraic topology studies the
qualitative properties of spaces, such as the number of holes in a surface, using
tools from abstract algebra. Through his investigations, Stasheff discovered
a new class of algebraic structures that he called A∞-algebras. The precise
definition is rather technical so we only sketch some of the main ideas behind it.

An ordinary algebra is a collection of elements that can be added, subtracted
and multiplied, but we cannot necessarily divide by non-zero elements and the
multiplication does not necessarily satisfy the commutativity law. For example,
the polynomials with a fixed number of variables and coefficients in the real
numbers form an algebra, and so do the n × n matrices with real entries. What
is important for our discussion is that the multiplication in an algebra is a binary
operation: it takes as inputs two elements a and b and outputs their product
ab. Thus, we may visualise the multiplication operation in an algebra as a
process described by the binary tree in (1). More generally, iterated applications,
keeping track of the corresponding bracketing, of the multiplication operation in
an algebra can be encoded with a planar binary rooted tree! For example, the
two ways to combine the multiplication operations in order to multiply three
elements correspond to the trees in (2).

What about the planar rooted trees that are non-binary? Stasheff discovered
that some structures that arise in algebraic topology have not only binary
operations, but a possibly infinite system of ‘higher operations’ with n + 1
inputs and a single output:

(a0, a1, . . . , an) 7−→ mn+1(a0, a1, . . . , an), n ≥ 0.

Crucially, the operation mn+1 is not obtained by iterated applications of the
binary operation m2(a0, a1) = a0a1 but is rather a new operation that multiplies
n + 1 elements ‘all at once.’ With this in mind, it is natural to visualise the
operation mn+1 as a process described by the tree
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a0 a1 · · · an

mn+1(a0, a1, . . . , an)

Arbitrary planar rooted trees are then obtained by combining the various higher
operations. Stasheff also discovered that these operations satisfy an infinite
system of equations—the A∞-equations—that serve as a replacement of the
associativity equation:∑
r+s+t=n+1

±mr+1+s(a0, a1, . . . , ar−1, ms(ar, . . . , as−1), mt(as, . . . , an)) = 0, n ≥ 0.

The reader is not expected to parse the A∞-equations easily (mathematicians
struggle to do this the first time they see them as well). We merely wish to
highlight the kind of complexity that arises in this context. However, this
complexity is not arbitrary: As it turns out, the A∞-equations are governed by
the combinatorial structure of the Stasheff–Tamari associahedra. For example,
rewritten in terms of a certain ‘boundary operator’ x 7→ ∂(x), the A∞-equation
corresponding to the value n = 3 involves precisely the interior and the boundary
of the two-dimensional associahedron: 9

∂( ) = − + − −

In the above depiction of the A∞-equation we have replaced combinations of
higher operations by the corresponding trees.

Summarising, an A∞-algebra consists, roughly speaking, of a collection of
elements that can be added, subtracted and that are equipped with a system
of operations that satisfy the A∞-equations. One of the many marvels of A∞-
algebras is that they appear not only in algebraic topology but also in fields as
diverse as algebraic geometry, representation theory and symplectic geometry.
For example, they are crucial to Kontsevich’s famous Homological Mirror
Symmetry Conjecture that foresees a far-reaching bridge between algebraic and
symplectic geometry [8].

Since this is all too abstract, let us look at a concrete example. Consider the
polynomials in two variables ε and t with real coefficients, say. We will modify
the usual multiplication table for polynomials by declaring that ε2 = 0. 10 For

9 The signs that appear are related to the arrows in the Tamari lattice. Do you see how?
10 For technical reasons that we did not explain we also need to modify the degrees of
polynomials by declaring that ε is a variable of degree 1 and that t is a variable of degree 2.
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Figure 4: The Borromean rings.

example,

(2 + πεt2 + t5)(ε + 3t5) = 2ε + 6t5 + 3πεt7 + εt5 + 3t10

since (πεt2)ε = πε2t2 = 0. We now fix a number n ≥ 2 and introduce the
operation

mn+1(ε, ε, . . . , ε︸ ︷︷ ︸
n+1 times

) = t.

This new operation, which cannot be obtained from combinations of the binary
multiplication since ε2 = 0, defines an A∞-algebra structure on this collection
of polynomials and different choices of n give us fundamentally different such
structures. Notice also how the new operation allows us to express an algebraic
relation of ‘higher order’ between the variables ε and t, although these are
independent from each other if we consider the binary multiplication only.

5 The Borromean r ings

Although the definition of an A∞-algebra is quite technical and somewhat
obscure, the higher operations sometimes have interesting interpretations. Here
is one such example.

The Borromean rings, 11 depicted in Figure 4, are a configuration of three
interlinked circles in three-dimensional space. The distinctive feature of this

11 Named after the House of Borromeo who included them in their coat of arms.
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configuration is that, while the three circles are linked together, if we remove any
one circle the remaining two are no longer linked. 12 Using sophisticated machin-
ery from algebraic topology one constructs an A∞-algebra from the Borromean
rings; this A∞-algebra has three distinguished elements α, β and γ (correspond-
ing roughly to the three circles in the configuration) whose multiplication table
looks as follows:

αβ = βα = 0, αγ = γα = 0 and βγ = γβ = 0.

These equations reflect the fact that any two circles in the Borromean rings
are unlinked. On the other hand, Massey [10] discovered (in a slightly different
language) that there is a non-zero ternary operation

m3(α, β, γ) ̸= 0

that witnesses the fact that the circles in the Borromean rings are triply linked!

6 A∞-a lgebras in contemporary mathematical research

Even though A∞-algebras were invented about sixty years ago, many of their
properties remain mysterious and their careful study has led to unexpected
applications. For example, in their work in (complex) three-dimensional alge-
braic geometry [5], Donovan and Wemyss formulated a deep conjecture that,
thanks to the work of several mathematicians, relates a beautiful family of
geometric objects called compound Du Val singularities 13 to a particular class
of A∞-algebras. The recent solution [7] to the conjecture involves a delicate
analysis of the qualitative properties of these A∞-algebras—an approach that
was not at all obvious from the original formulation of the conjecture!

12 An elementary proof of the fact that the Borromean rings are indeed linked can be found
in the book [1] by Aigner and Ziegler, a book that we wholeheartedly recommend to the
reader.
13 See also the snapshot by Buchweitz and Faber [2] where the (two-dimensional) Du Val
singularities make an appearance.
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Image credi ts

The illustrations were created by the author with the following exceptions:

Figure 2 Author: Nilesj; minor modifications by the author. Licensed under
Creative Commons CC0 1.0 Universal Public Domain Dedication via Wiki-
media Commons, https://en.wikipedia.org/wiki/File:Associahedron_K5_
front.svg and https://en.wikipedia.org/wiki/File:Associahedron_K5_front.
svg, visited on August 22, 2024.

Figure 4 Author: Jim.belk; background removed by Ravenpuff. Released to the
public domain via Wikimedia Commons, https://en.wikipedia.org/wiki/
Borromean_rings#/media/File:Borromean_Rings_Illusion_(transparent)
.png, visited on August 22, 2024.
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