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Let k be a field and A a finite-dimensional algebra over k. Suppose that A is of
finite representation type, that is the category mod(A) of finite-dimensional (right)
A-modules admits an additive generator M , say. The algebra Γ := EndA(M) of
endomorphisms of M is then an Auslander algebra, that is Γ has global dimension
at most 2 and dominant dimension at least 2 [Aus71]. The basic paradigm of
Auslander–Reiten Theory is that the minimal projective resolutions of simple Γ-
modules of projective dimension 2 (the largest possible) correspond to almost-
split sequences in mod(A) [AR75]. More generally, if d ≥ 1 and M is a d-cluster
tilting A-module, then Γ is a (d+1)-dimensional Auslander algebra in the sense of
Iyama [Iya07], that is Γ has global dimension at most d+1 and dominant dimension
at least d+ 1. We remind the reader that M is a d-cluster tilting A-module if the
following conditions are equivalent for an indecomposable A-module X:

• X is a direct summand of M .
• For all 0 < i < d, ExtiA(X,M) = 0.
• For all 0 < i < d, ExtiA(M,X) = 0.

Thus, a 1-cluster tilting A-module is simply an additive generator of mod(A) for
the latter two conditions are empty in this case. In this more general context,
minimal projective resolutions of simple Γ-modules of projective dimension d+ 1
correspond to d-almost-split sequences in add(M) ⊆ mod(A), the additive closure
ofM in mod(A). Furthermore, up to Morita equivalence, the association (A,M) 7→
EndA(M) induces a bijection between:

(1) Pairs (A,M) consisting of a finite-dimensional algebra A and a d-cluster
tilting A-module M .

(2) (d+ 1)-Auslander algebras Γ.

The above bijective correspondence is known as the Auslander–Iyama Correspon-
dence [Aus71, Iya07].

Suppose now that Λ is a finite-dimensional selfinjective algebra; for simplicity,
assume Λ to be basic. We wish to interpret the minimal projective resultions of
simple Γ-modules of infinite (!) projective dimension in higher Auslander–Reiten-
theoretic terms. For this, it is necessary to enforce a certain periodicity on these
resultions. More precisely, we assume that there exists an exact sequence of Λ-
bimodules

0 → Λσ → Pd+1 → Pd → · · · → P2 → P1 → P0 → Λ → 0

with projective middle terms, where σ is an algebra automorphism of Λ; in this
case we say that Λ is twisted (d+ 2)-periodic with respect to σ. Let S be a simple
Λ-module of infinite projective dimension; applying the tensor product functor
S⊗Λ− to the above exact sequence yields the first part of a projective resolution of
S that is ‘twisted periodic’ since the (d+2)-syzygy of S is again a simple Λ-module.
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Thus, the minimal total projective resolution of S is completely determined by the
automorphism σ and the truncation

Qd+1 → Qd → · · · → Q2 → Q1 → Q0 → νQ0,

where Q0 is the projective cover of S and νQ0 is its injective hull. It is natural to
wish to interpret the latter complex as an almost split (d+2)-angle [IY08, GKO13].
Indeed, a theorem of Amiot [Ami07] in the case d = 1 and a generalisation by
Lin [Lin19] show that the pair (proj(Λ),−⊗Λ Λσ−1) admits a (d+ 2)-angulation,
where proj(Λ) is the category of finite-dimensional projective Λ-modules. Con-
versely, if proj(Λ) admits a (d + 2)-angulated structure, then Λ must be twisted
(d+ 2)-periodic with respect to some algebra automorphism [GSS03, GKO13,
Han20]. Furthermore, if Λ arises as the endomorphism algebra of a dZ-cluster tilt-
ing object in a triangulated category1 with finite-dimensional morphism spaces,
then proj(Λ) admits a (d + 2)-angulated structure [GKO13]. The main result
in [JM22] refines the above to the following more precise statement (the case
d = 1 was established in [Mur22]):

Theorem (Derived Auslander–Iyama Correspondence). Let k be a perfect field.
There is a bijective correspondence between the following:

(1) Quasi-isomorphism classes of DG algebras A such that H0(A) is a basic
finite-dimensional algebra and A is a dZ-cluster tilting object of its perfect
derived category Dc(A).

(2) Equivalence classes of pairs (Λ, σ) consisting of a basic finite-dimensional
algebra Λ and σ is an algebra automorphism such that Λ is twisted (d+2)-
periodic with respect to σ.

The correspondence is given by A 7→ (H0(A), σ), where σ is a choice of algebra
automorphism of H0(A) such that H−d(A) ∼= H0(A)σ as H0(A)-bimodules.

The key ingredient in the proof of the theorem is the restricted universal Massey
product (rUMP) of length d+2 associated to any minimal A∞-model of A [Kad82,
Kel01, LH]. By definition, the rUMP of A is the Hochschild cohomology class

uA ∈ HHd+2,−d(H0(A), H∗(A))

that is the image of the class {md+2} ∈ HHd+2,−d(H∗(A), H∗(A)) of the higher
operation md+2 : H

∗(A)⊗d+2 → H∗(A)[−d] under the canonical map

HHd+2,−d(H∗(A), H∗(A)) −→ HHd+2,−d(H0(A), H∗(A)).

Indeed, a further main result in [JM22] is the following variant of the above theo-
rem:

Theorem. Let k be a perfect field. There is a bijective correspondence between
the following:

(1) Quasi-isomorphism classes of DG algebras A such that H0(A) is a basic
finite-dimensional algebra and A is a dZ-cluster tilting object of its perfect
derived category Dc(A).

1That is a (basic) d-cluster tilting object that is isomorphic to its d-fold shift.
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(2) A∞-isomorphism classes of minimal A∞-algebras B with the following
properties:

• The ordinary algebra B0 is a basic Frobenius algebra.
• The underlying graded algebra of B is concentrated in degrees that are
multiples of d, and there exists an invertible element φ ∈ Bd.

• The rUMP uB ∈ HHd+2,−d(B0, B) is invertible in the Hochschild–
Tate cohomology (bigraded) algebra HH•,∗(B0, B).

The correspondence associates to a DG algebra A any of its minimal A∞-models.

It is interesting to investigate in more detail the existence of additional struc-
tures on the DG algebras that arise from the Derived Auslander–Iyama Corre-
spondence.

Conjecture. Let Λ be a basic finite-dimensional algebra that is twisted (d + 2)-
periodic with respect to the Nakayma automorphism ν of Λ. Let A be any DG
algebra that corresponds to (Λ, ν) under the Derived Auslander–Iyama Correspon-
dence. Then, A admits a right d-Calabi–Yau structure in the sense of [KS06].

The conjecture is motivated by the existence of a right d-Calabi–Yau structure
on the Amiot–Guo–Keller cluster category [Ami09, Guo11, Kel05a] associated to
the derived (d+1)-preprojective algebra [Kel11, IO13] of a d-representation finite
algebra [IO11], see [KL23] for an announcement of the proof of a much more
general theorem on Calabi–Yau structures on Drinfeld quotients.
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